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ABSTRACT 

 

 Tied arch bridges have been designed and constructed since the late 19th century.  

With their open vista owing to minimalist features tied arch bridges continue to appeal the 

public.  Tied arch bridges are both aesthetic and economical alternates to long span bridges 

holding a place in the hierarchy of major bridges.  They fit in a niche between viable and 

economical plate girder spans and short cable stayed bridge spans.  There are several 

variations of the tied arch with the most common form being those having vertical hangers, 

stiff tie girders and slender arch ribs.  This tied arch variation is examined in-depth using 

three-dimensional finite element analysis to determine both static and dynamic 

characteristics.  Moreover, contemporary evolutions and innovations are presented as are 

comparisons between Load Factor Design and Load and Resistance Factor Design. 

 Four bridges, all spanning major rivers in the Midwest, are at the core of this study.  

The bridges have different spans, widths, arch rise, hanger number and spacing as well as 

wind bracing arrangments.  The spans for these bridges range from 535 feet to just over 900 

feet.  The weight of structural steel per square foot of bridge deck ranges from 111 lbf/square 

feet to 184 lbf/square feet.  The total dead load ranges from 244 lbf/square feet to 311 

lbf/square feet.  Though there is an increase in the live load for the current AASHTO LRFD 

code over those codes used to design these bridges, the older member sections have 

acceptable capacity-demand ratios.  This is especially true for bridges designed using the 

HS20 modified live load.  The fundamental frequency for the bridges ranges from 0.282 Hz 

to 0.514 Hz with a corresponding mode shape of a full sine wave.  Additional frequencies 

and mode shapes are reported based on their mass participation.  The influence of key 

element stiffness on frequency is also examined.   



www.manaraa.com

iv 

ACKNOWLEDGEMENTS 

 

“There is great joy in achieving what others deem impossible”   

Major General Leif J. Sverdrup 

 

The path leading to the completion of the doctoral program and this dissertation has 

without a doubt proved to be equally as rewarding as the completion.  Along this path I have 

been privileged to meet many professors who shared their insight and passion for numerous 

subjects, making complex topics both practical and immediately useful.  Additionally, many 

colleagues have selflessly shared their knowledge and enthusiasm for bridge structural 

engineering.  In recognition of my gratitude to these mentors I will strive to impress upon 

others the knowledge and experience I have gained.      

No journey progresses well without a proper start and support along the way.  As 

such I am greatly indebted to my parents for fostering my inquisitive nature and honing my 

persistence.  Similarly I’m grateful to my sister for passing along her enthusiasm for 

computers and knack for programming.  I thank my advising committee for their insights and 

patience over the years especially those of Dr. Genda Chen and Dr. Victor Birman.  Lastly, I 

wish to gratefully acknowledge the support of my wife and children who have supported my 

efforts, for better or worse, to completion.  Paula, Emily, Amy, Kelly and Kyle, you are my 

inspiration, I love you and you all have a very special place in my heart and thoughts. 

 

 



www.manaraa.com

v 

TABLE OF CONTENTS 

 

Page 

ABSTRACT .................................................................................................................................... iii 

ACKNOWLEDGEMENTS ............................................................................................................ iv 

LIST OF ILLUSTRATIONS ........................................................................................................... x 

LIST OF TABLES ........................................................................................................................ xiii 

SECTION 

1. INTRODUCTION ........................................................................................................ 1 

1.1. BACKGROUND ................................................................................................ 1 

1.2. OBJECTIVES ..................................................................................................... 3 

2. THE TIED ARCH BRIDGE ........................................................................................ 5 

2.1. HISTORICAL POINTS ..................................................................................... 5 

2.2. ARCH BRIDGES ............................................................................................... 6 

2.3. TIED ARCH BRIDGE ....................................................................................... 9 

2.4. TIED ARCH STRUCTURAL BEHAVIOR .................................................... 12 

2.4.1 Arch Rib. ............................................................................................... 15 

2.4.2 Tie-Girder. ............................................................................................. 15 

2.4.3 Hangers. ................................................................................................ 16 

2.4.4 Floor System. ........................................................................................ 16 

3. BRIDGE DESCRIPTIONS ........................................................................................ 21 

3.1. JEFFERSON BARRACKS BRIDGE .............................................................. 21 

3.2. CITY ISLAND BRIDGE ................................................................................. 23 

3.3. PAGE AVENUE BRIDGE .............................................................................. 26 

3.4. TENNESSEE RIVER BRIDGE ....................................................................... 29 

3.5. BRIDGE MATERIALS ................................................................................... 33 



www.manaraa.com

vi 

3.5.1 3AASHTO Material Specifications. ..................................................... 34 

3.5.2 Arch Bridge Steel Material Specifications. ........................................... 35 

3.5.3 ASTM A36 ............................................................................................ 36 

3.5.4 ASTM A572 (AASHTO M223) ........................................................... 36 

4. REVIEW OF LITERATURE ..................................................................................... 38 

4.1. PUBLISHED LITERATURE ........................................................................... 38 

4.2. ANALAYSIS OF TIED ARCH BRIDGES ..................................................... 38 

4.2.1 Arch Bridges. ........................................................................................ 39 

4.2.2 Preliminary Analysis and Hanger Adjustment of Tied Arch Bridges. .. 41 

4.2.3 Design of Steel Tied Arch Bridges: An Alternative.............................. 42 

4.2.4 Theory and Design of Bridges and Structural Steel Designers 
Handbook. ............................................................................................. 45 

4.2.5 Computational Analysis and Design of Bridge Structures. ................... 46 

4.3. BUCKLING ANALYSIS OF TIED ARCH BRIDGES .................................. 48 

4.3.1 Buckling and Vibration of Arches and Tied Arches. ............................ 49 

4.3.2 Buckling Design of Steel Tied Arch Bridges. ....................................... 50 

4.4. TIED ARCH DESIGN ..................................................................................... 53 

4.4.1 Design of Steel Tied Arch Bridges: An Alternative.............................. 54 

4.4.2 Arch Bridges. ........................................................................................ 54 

4.4.3 Structural Steel Designers Handbook. .................................................. 54 

4.4.3.1 Rise to span ratio. ................................................................... 55 

4.4.3.2 Panel length. ........................................................................... 55 

4.4.3.3 Depth to span ratio.................................................................. 55 

4.4.3.4 Arch rib cross section. ............................................................ 55 

4.4.3.5 Dead load distribution. ........................................................... 55 

4.4.3.6 Live load distribution. ............................................................ 55 

4.4.3.7 Wind loading. ......................................................................... 55 



www.manaraa.com

vii 

4.4.3.8 Thermal loading...................................................................... 56 

4.4.3.9 Deflections. ............................................................................. 56 

4.4.3.10 Dead load to total load ratio. .................................................. 56 

4.5. CONSTRUCTION OF TIED ARCH BRIDGES ............................................. 56 

4.6. STRUCTURAL HEALTH MONITORING .................................................... 57 

4.7. PROPRIETARY INFORMATION .................................................................. 68 

5. BRIDGE DESIGN REQUIREMENTS ...................................................................... 69 

5.1. BACKGROUND .............................................................................................. 69 

5.2. LOAD EFFECTS AND FACTORS ................................................................. 70 

5.2.1 Dead Load (DC) .................................................................................... 71 

5.2.2 Dead Load (DW) ................................................................................... 72 

5.2.3 Live Load (LL) ...................................................................................... 72 

5.2.4 Dynamic Impact Allowance (IM) ......................................................... 73 

5.2.5 Wind Load on Structure (WS) .............................................................. 74 

5.2.6 Earthquake Load (EQ) .......................................................................... 75 

5.3. LOAD COMBINATIONS ............................................................................... 76 

5.3.1 Strength I ............................................................................................... 76 

5.3.2 Strength III ............................................................................................ 76 

5.3.3 Extreme Event I..................................................................................... 76 

5.3.4 Service I ................................................................................................ 77 

5.3.5 Service II ............................................................................................... 77 

5.4. LOAD ANALYSIS RESULTS ........................................................................ 77 

6. FINITE ELEMENT MODEL DESCRIPTION .......................................................... 81 

6.1. GENERAL ....................................................................................................... 81 

6.2. BRIDGE MODELS .......................................................................................... 82 

6.2.1 Floorsystem ........................................................................................... 85 



www.manaraa.com

viii 

6.2.2 Hangers ................................................................................................. 86 

6.2.3 Bridge Piers ........................................................................................... 86 

6.2.4 Bridge Bearings ..................................................................................... 87 

6.2.5 Approach Spans .................................................................................... 88 

6.2.6 Upper and Lower Bound Stiffness ........................................................ 89 

6.3. BRIDGE MODEL CALIBRATION ................................................................ 90 

6.4. FINITE ELEMENT MODEL RESULTS ........................................................ 92 

7. BRIDGE DYNAMIC CHARACTERISTICS ............................................................ 97 

7.1. GENERAL ....................................................................................................... 97 

7.2. DYNAMICS ..................................................................................................... 97 

7.3. EARTHQUAKE INFLUENCED BRIDGE DYNAMICS ............................... 98 

7.4. WIND INFLUENCED BRIDGE DYNAMICS ............................................. 103 

7.5. TRAFFIC INFLUENCED BRIDGE DYNAMICS ........................................ 106 

7.6. BRIDGE MODAL ANALYSIS RESULTS ................................................... 107 

7.7. HANGER DYNAMIC CHARACTERISTICS .............................................. 116 

7.8. STRUCTURAL HEALTH MONITORING APPLICATIONS ..................... 120 

8. CONTEMPORARY TIED ARCH BRIDGES ......................................................... 125 

8.1. GENERAL ..................................................................................................... 125 

8.2. INTERNAL REDUNDANCY ....................................................................... 125 

8.2.1 Internal Redundant Structural Steel .................................................... 126 

8.2.2 High Performance Steel ...................................................................... 133 

8.2.3 Internal Redundant Concrete Tie Girder. ............................................ 134 

8.3. COMPOSITE TIE GIRDERS ........................................................................ 137 

8.4. ALTERNATE CABLE ARRANGEMENTS ................................................. 138 

8.5. ARCH ARRANGEMENT ............................................................................. 140 

9. CONSTRUCTION ................................................................................................... 142 



www.manaraa.com

ix 

9.1. CANTILEVER CONSTRUCTION. .............................................................. 142 

9.2. SHORED CONSTRUCTION. ....................................................................... 143 

9.3. OFF-SITE CONSTRUCTION. ...................................................................... 144 

9.4. VERTICAL-HORIZONTAL CONSTRUCTION. ......................................... 147 

10. RESULTS ................................................................................................................. 149 

10.1. STATIC RESULTS ........................................................................................ 149 

10.1.1 Static Dead Load Results. ................................................................... 152 

10.1.2 Static Live Load Results. .................................................................... 154 

10.2. DYNAMIC RESULTS ................................................................................... 158 

10.3. CONCLUSIONS ............................................................................................ 160 

10.4. FUTURE WORK ........................................................................................... 162 

APPENDICES 

A.  ANALYSIS OUTPUT FOR CITY ISLAND BRIDGE ...................................... 164 

B.  ANALYSIS OUTPUT FOR JEFFERSON BARRACKS BRIDGE ................... 201 

C.  ANALYSIS OUTPUT FOR PAGE AVENUE BRIDGE .................................... 251 

D.  ANALYSIS OUTPUT FOR TENNESSEE RIVER BRIDGE ............................ 309 

E.  DESIGN PLANS FOR CITY ISLAND BRIDGE ............................................... 361 

F.  DESIGN PLANS FOR PAGE AVENUE BRIDGE ............................................ 363 

G.  DESIGN PLANS FOR TENNESSEE RIVER BRIDGE .................................... 366 

H.  DESIGN PLANS FOR JEFFERSON BARRACKS BRIDGE ........................... 368 

INDEX ......................................................................................................................................... 371 

REFERENCES ............................................................................................................................ 372 

VITA ............................................................................................................................................ 377 

 

  



www.manaraa.com

x 

LIST OF ILLUSTRATIONS 

 

Page 

Figure 2.1.  Two Hinged Arch ......................................................................................................... 7 

Figure 2.2.  Example of a Closed Spandrel Arch Bridge, Virginia Street Bridge, Reno, NV ......... 9 

Figure 2.3.  Example of Open Spandrel Bridge, Hoover Dam By-Pass Bridge, NV ..................... 10 

Figure 2.4.  True Arch Foundation - I-74 over the Mississippi River - Preliminary ..................... 10 

Figure 2.5.  Tied Arches ................................................................................................................ 11 

Figure 2.6.  Tied Arch Structural Arrangement ............................................................................. 13 

Figure 2.7.  Tied Arch Structural Action ....................................................................................... 14 

Figure 2.8.  Tied Arch Bridge ........................................................................................................ 19 

Figure 2.9.  View of Tied Arch floorsystem:  Stringers, Floorbeams, Lower laterals ................... 20 

Figure 2.10.  View of Floorsystem and Arch Tie-Girders ............................................................. 20 

Figure 3.1.  Jefferson Barracks Bridge. ......................................................................................... 22 

Figure 3.2.  City Island Bridge, Dubuque, Iowa. ........................................................................... 24 

Figure 3.3.  Page Avenue Bridge (Rte 364), St. Louis, MO. ......................................................... 27 

Figure 3.4.  US 24 Bridge over the Tennessee River, near Paducah, KY. ..................................... 31 

Figure 4.1.  Alternate Cross Section from Hall and Lawin (1985). ............................................... 44 

Figure 5.1.  AASHTO Bridge Loads ............................................................................................. 71 

Figure 5.2.  HL-93 Live Load Model............................................................................................. 74 

Figure 6.1.  3-D Frame Element with Degrees of Freedom ........................................................... 83 

Figure 6.2.  3-D Shell Element ...................................................................................................... 83 

Figure 6.3.  FEM Models a) US 24, b) City Island, c) Page Avenue, d) Jefferson Barracks......... 84 

Figure 6.4.  Rigid Link Connections for Floorsystem ................................................................... 85 

Figure 6.5.  Visualized Link Element used for Bridge Bearings ................................................... 88 

Figure 7.1.  Central US Earthquakes from 1800 to 1995 in the New Madrid Seismic Zone 
and Wabash Valley Seismic Zone. ............................................................................. 99 

Figure 7.2.  Site Specific Spectra for Caruthersville, MO. .......................................................... 101 



www.manaraa.com

xi 

Figure 7.3.  500-Yr Longitudinal Time History at Caruthersville, MO site ................................ 101 

Figure 7.4.  2500-Yr Longitudinal Time History at Caruthersville, MO site .............................. 102 

Figure 7.5.  Caruthersville Site Location and Location of US 24 Bridge .................................... 102 

Figure 7.6.  City Island Hanger Mode Shapes, a) first mode, b) second mode, c) third mode. ... 119 

Figure 7.7.  Variation of Frequency vs Arch Rib Stiffness, US 24 Bridge .................................. 122 

Figure 7.8.  Variation of Frequencey vs Arch Tie Stiffness, US 24 Bridge ................................ 122 

Figure 7.9.  Variation of Frequency vs Hanger Stiffness, US 24 Bridge ..................................... 123 

Figure 7.10.  Variation of Frequency vs Bearing Stiffness, US 24 Bridge .................................. 123 

Figure 7.11.  Variation of Frequency vs Deck Stiffness, US 24 Bridge ...................................... 124 

Figure 8.1.  Alternate Tie Girder Arrangements. ......................................................................... 126 

Figure 8.2.  Alternate Tie Girder Arrangements. ......................................................................... 127 

Figure 8.3.  Tie Girder Constraint Sets ........................................................................................ 127 

Figure 8.4.  City Island Tie Girder Dimensions & Properties ..................................................... 129 

Figure 8.5.  Partial Plate Redundancy Retrofit ............................................................................ 131 

Figure 8.6.  Alternate Bridge Cross Section ................................................................................ 135 

Figure 8.7.  Concrete Tie Girder with Post Tensioning ............................................................... 136 

Figure 8.8.  a.  Providence River Bridge, b.  Blennerhassett Bridge. .......................................... 139 

Figure 8.9.  Network Tied Arch - Tie/Chord European Construction. ........................................ 140 

Figure 9.1.  Example of Cantilevered Construction. .................................................................... 143 

Figure 9.2.  Tie-Backs used on Amelia Earhart Bridge. .............................................................. 143 

Figure 9.3.  Single Span Construction using Shoring in the River. ............................................. 144 

Figure 9.4.  Low-Level Transport ................................................................................................ 146 

Figure 9.5.  High-level Bridge Transport, Rte 364 at Missouri River. ........................................ 146 

Figure 9.6.  Schematic showing transport of Rte 364 Bridge. ..................................................... 147 

Figure 9.7.  Superstructure Rotation Method. .............................................................................. 148 

Figure 10.1.  Normalized Axial Dead Load for all Study Bridges .............................................. 153 

Figure 10.2.  Relationship of Arch Rib Moment to Arch Tie Moment ....................................... 154 



www.manaraa.com

xii 

Figure 10.3.  Normalized Axial Live Load for all Study Bridges ................................................ 156 

Figure 10.4.  Normalized Live Load Moment for all Study Bridges ........................................... 156 

Figure 10.5.  Normalized Axial Live Load (Plans) to FEA - LRFD ........................................... 157 

Figure 10.6.  Normalized Live Load Moment, HS20 to HL93 .................................................... 158 

 



www.manaraa.com

xiii 

LIST OF TABLES 

 

Page 

Table 3.1.  Bridge Properties ......................................................................................................... 32 

Table 3.2.  Bridge Weights ............................................................................................................ 33 

Table 3.3.  AASHTO and ASTM Material Specifications ............................................................ 34 

Table 5.1.  City Island Bridge LRFD Member Reactions.............................................................. 77 

Table 5.2.  City Island Arch Rib and Tie Girder Section Properties ............................................. 78 

Table 6.1.  General Bridge Information ......................................................................................... 82 

Table 6.2.  Finite Element Model Data .......................................................................................... 84 

Table 6.3.  Stiffness Limits for Concrete Members ....................................................................... 90 

Table 6.4.  Bridge Model Force Comparisons ............................................................................... 92 

Table 6.5.  Bridge Model Deflections Comparison ....................................................................... 93 

Table 6.6.  Bridge Model Force Comparisons ............................................................................... 93 

Table 6.7.  Bridge Model Force Comparisons ............................................................................... 94 

Table 6.8.  Bridge Model Force Comparisons Unfactored Live Load LRFD and Pre-LRFD ....... 94 

Table 6.9.  Bridge Model Force Comparisons Unfactored Live Load LRFD and Pre-LRFD ....... 95 

Table 6.10.  Bridge Parametric Comparison, Rise to Span = 1:6; 14 Panels ................................. 96 

Table 7.1.  Critical Wind Speed based on Bridge Frequencies .................................................... 104 

Table 7.2.  Vehicle Excitation Frequency .................................................................................... 106 

Table 7.3.  Total Mass Participation for Dynamic Analysis ........................................................ 108 

Table 7.4.  Tennessee I-24 Bridge - Dynamic Properties, Lower Bound Stiffness ..................... 108 

Table 7.5.  Tennessee I-24 Bridge - Dynamic Properties, Upper Bound Stiffness ...................... 109 

Table 7.6.  City Island Bridge - Dynamic Properties, Lower Bound Stiffness ............................ 110 

Table 7.7.  City Island Bridge - Dynamic Properties, Lower Bound Stiffness ............................ 111 

Table 7.8.  Page Avenue Bridge - Dynamic Properties, Lower Bound Stiffness ........................ 112 

Table 7.9.  Page Avenue Bridge - Dynamic Properties, Upper Bound Stiffness ......................... 113 



www.manaraa.com

xiv 

Table 7.10.  Jefferson Barracks Bridge - Dynamic Properties, Lower Bound Stiffness .............. 114 

Table 7.11.  Jefferson Barracks Bridge - Dynamic Properties, Upper Bound Stiffness .............. 115 

Table 7.12.  Individual Hanger Frequency (Hz) – Mode 1 .......................................................... 117 

Table 7.13.  Individual Hanger Frequency (Hz) – Mode 2 .......................................................... 118 

Table 7.14.  Individual Hanger Frequency (Hz) – Mode 3 .......................................................... 118 

Table 7.15.  City Island Bridge Center Hanger Dynamics .......................................................... 119 

Table 8.1.  Comparison of Tie Girder Alternates to Welded Box Tie Girder .............................. 133 

Table 10.1.  Bridge Rise to Span Properties ................................................................................ 149 

Table 10.2.  Bridge Rib and Tie Properties .................................................................................. 150 

Table 10.3.  Bridge Weights ........................................................................................................ 151 

Table 10.4.  Bridge Arch Member Weight to Total Weight ........................................................ 151 

Table 10.5.  Bridge Tie Girder Weight to Total Weight .............................................................. 152 

Table 10.6.  US 24 Bridge over the Tennessee River Modal Comparison .................................. 159 

 

  



www.manaraa.com

1 
 

1. INTRODUCTION 

1.1. BACKGROUND 

Tied Arch bridges have been designed and constructed since the late 19th century.  

They continue to be an economical and sound transportation link for river crossings requiring 

a medium span over navigation channels.  However, little has been written about the analysis, 

design or construction of such bridges and even less on their dynamic behavior.  The 

dynamic behavior of such bridges is of interest particularly as earthquake, wind, and traffic 

loadings are a concern.  Moreover, damage detection in bridges or structural heath 

monitoring requires knowledge of the vibration characteristics of bridges.  The dynamic 

properties of the bridge of interest are natural frequencies, damping ratios, and mode shapes.  

To address these gaps, this project presents: 

1. A focus on tied arches with the following characteristics:  

a. Through Arches, having two, parallel arch ribs 

b. Vertical Hangers 

c. Primary structural members of steel construction. 

d. Single span in the range of 500 feet to 900 feet. 

2. Primary and secondary structural components which characterize tied arch bridges 

are defined.   

3. The dynamic characteristics of tied arch bridges including natural frequencies and 

mode shapes. 

4. Construction techniques for tied arch bridges with consideration to design impacts. 

5. Contemporary developments for this bridge type are also presented including fracture 

critical and redundancy issues. 
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6. Baselines for Structural Health Monitoring and applications to Tied Arch bridges will 

be discussed as part of the dynamic portion of this project.   

Presenting a comprehensive, single source, for the static and dynamic engineering 

and construction of tied arch bridges will close the existing knowledge gap and provide a 

solid foundation for future efforts to improve on the performance of these economical 

bridges.  A priori knowledge of the magnitude and distribution of service loads through the 

elements of the tied arch produces confident, cost effective bridge arrangements.  Similarly, 

knowledge of the dynamic performance of the bridge and components result in improved 

performance for wind, earthquake and traffic induced vibrations.  Moreover the dynamic 

behavior of the bridge and components will provide a baseline for the structural health of the 

elements without deterioration.  As a result, vibration data collected from similar existing 

bridges with deterioration may find a comparative baseline.  All bridge and construction 

engineers will benefit from a single collection of contemporary innovations in tied arch 

design and construction or erection techniques.  Closing the existing knowledge gap, will 

advance the knowledge base for tied arch bridges with students, owners, and bridge 

consultants to apply and improve on the state of the practice captured in this single resource.  

This research will provide a deeper, broader understanding of tied arch bridges for 

students, owners and bridge consultants.  Given the economy and aesthetics of tied arch 

bridges, a better understanding of the structural performance including benefits and 

limitations will lead to improvements and greater use of this bridge type could lead to less 

expenditure of scarcely available transportation funds. 

Through the data presented students, owners, and bridge consultants may determine 

the dynamic effects of wind, seismic, or traffic events on the performance of the bridges.  
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The study may be used a means to triage the existing tied arch bridges in inventory, which 

may have been designed and constructed with, or susceptible to, to poor details, to determine 

if additional studies for structural health monitoring are necessary to further characterize the 

specific bridge performance. 

Though this study targets long span river bridges, the material presented herein can 

be applied to smaller tied arch bridges used for primarily for aesthetics.  Recently several tied 

arch bridges have been designed and erected for smaller rivers such as the Virginia Street 

Bridge over the Truckee River in Reno, Nevada and the Rapid Transit Denver Light Rail 

over the 6th Avenue Freeway Bridge in Denver, Colorado.  

Finally, within the greater building community there are multiple interest groups 

whose members are involved in planning, designing and constructing a major river crossing.  

Arguably one of the most important of those groups is the contractors or their construction 

engineers.  Construction engineers are responsible for coordinating with contractors to 

develop a safe erection design and plans for buildings or bridges.  This study presents several 

erection schemes along with contemporary methods, to demonstrate the range of schemes 

available to contractors/engineers.  These methods include erecting via falsework, cables and 

strong-backs, and float-ins with and without self-propelled-modular-transporters (SPMTs).  

As a result this study transcends the bridge design interest and should be of interest to 

contractors and their engineers.   

1.2. OBJECTIVES 

1. Complete a literature search and provide a description for pertinent published work. 

2. Define the Tied Arch system and components. 

3. Provide preliminary results of the static analysis and design for service loads 
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4. Provide a dynamic analysis of the bridge and components 

5. Develop recent improvements to tied arch components 

6. Develop erection schemes and contemporary alternates 

7. Discussion on the potential application for Structural Health Monitoring 
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2. THE TIED ARCH BRIDGE 

2.1. HISTORICAL POINTS 

History documents arch bridges of stone construction dating to 2,200 B.C. in the 

middle-eastern valleys of the Tigris and Euphrates rivers (Tyrrell, 1911).  Though these stone 

arch bridges of Babylon do not exist today there are many that have stood the test of time.  

Such bridges include the Pont Du Gard, the Ponte Vecchio and the Jade Belt Bridge.  The 

renown Pont Du Gard is a Roman aqueduct, built in Gard, France over the Gardon River, 18 

B.C. (Dupre, 1997)  The Italian Ponte Vecchio, spans the Arno River in the City of Florence 

and was completed in 1345 (Dupre, 1997).  The XiuYi (Jade Belt) bridge is located at the 

summer palace in Beijing and was completed in 1764 (Cortright, 2003).  In short, these 

durable bridges convey a sense of beauty, solidity, stability and constancy.  All are 

characteristics bestowed on modern arch bridges that are forged iron and steel.   

The history of the modern arch bridges begins in 1779 Coalbrookedale, now 

Ironbridge, where the first such iron arch bridge exists today spanning the Severn River 

(Cortright, 2003).   The bridge at Coalbrookedale is an open spandrel bridge with the iron 

ribs supporting the travelway from the underneath.  This bridge is both functionally and 

aesthetically lighter than its masonry predecessors while it supports nearly the same live load 

as before.  The new materials permit arch bridges to span longer distances and carry more 

load.  As arch bridges and their materials evolved to provide greater capacity to span more 

open waterways, the ribs were configured above the travelway.  Longer spans and providing 

for greater traffic meant greater forces exerted to the foundations.  Construction of 

foundations in rivers in the 19th century was perilous and generally larger foundations often 

translated to more deaths.  In St. Louis, circa 1870, fourteen men died constructing the 

foundations for the Eads Bridge.   
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The Luiz I bridge over the Douro River, with main span of 566 feet, near Porto, 

Portugal, completed in 1885, is one of the first applications of a tension tie to reduce the 

outward, lateral thrust on the bridge’s foundations (Tyrrell, 1911).  The innovative tied-arch 

bridge would not become common place until the early 1900s with applications in Germany.  

Two bridges spanning the Rhine River, the first, a railroad bridge comprised of a series of 

three tied arches at Worms and the second at Mainz also with three tied arch spans.  Today 

the tied arch bridge is an aesthetical and economical bridge for span requirements in the 400 

to 1000 feet range.   This paper will review the characteristics, specifically the dynamic 

behavior of the tied arch with ancillary focus on the static characteristics for design, 

fabrication and erection of the tied arch bridges with a note for recent innovations.    

2.2. ARCH BRIDGES 

Definitions of arches often summon to mind masonry units constructed to curved 

lines of a bygone era.  Though poetic, definitions of this type provide little insight for 

defining the structural effect of arches or arch bridges.  For a more practical structural 

understanding of arch behavior, Xanthakos (1994) provides the following defining criteria for 

arches: 

 The arch as a structural unit shall be shaped and supported such that 

intermediate transverse loads are transmitted to the supports primarily 

through axial compressive thrusts. 

 The arch member must be sustained by supports capable of developing lateral 

and well as normal reactions. 

 The arch member should be shaped to avoid the introduction of bending 

moments for downward loads. 
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These requirements are presented in Figure 2.1.  The arch is acted upon by 

intermediate, transverse, downward point loads.  Under this loading the arch deflects, 

shortening along the longitudinal axis to create axial thrust which is, in turn, resisted by 

inclined reactions, R1 and R2.   Those reactions have the vertical and horizontal components 

also shown in .  Resisting the vertical and horizontal components require sizeable foundations 

or abutments, depending on the subsurface foundation material.  This is especially true as the 

span of the arch increases.  

 

 

Figure 2.1.  Two Hinged Arch 

 

The final criterion for the arch requires the arch member to be shaped to avoid 

bending moments in the rib for downward loads.   Maxima or minima for the internal 

reactions of a specific arch having a particular circular or parabolic shape may be developed 

for a unique set of external loads but not for all external loading combinations.  That is, for a 

specific arch shape and loading, the axial thrust may be maximized while the bending 

moment is minimized.  Moreover, fabrication and construction techniques for arches 

commonly involve connecting straight members on chords to for the best fit to the 

mathematical arch shape.  For this reason internal bending moments cannot be entirely 
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eliminated in arch structures.  Brockenbrough and Merritt (1994), Sack (1988), Xanthakos 

(1994) provide detailed analysis demonstrating the presence of bending moments for several 

arch structures for a given set of external loads.  As a result, the best outcome is to minimize 

bending moments in the arch rib for many arch structures including the tied arch structure. 

The present day tied arch arrangement evolved from early work to internally resist 

the outward thrust common to arch structures which in turn eliminates large foundations 

otherwise required to resist the outward thrust.  The internal resistance is provided via a 

tension tie connecting the base of the arch rib.  With the tension tie resisting the outward 

thrust, this results in only a vertical reaction at each end of the arch.  Figure 2.6 shows a tied 

arch subject to external loads and the resulting structural reactions.   

The tied arch continued evolving into the 20th century with the tension tie evolving 

into a tie girder, from the bowstring arch system to the Langer arch system to the more 

complex Tevit network tied arch.  The early development of the tied arch focused on the ratio 

of tie-beam to arch-rib stiffness such as Chandrangsu and Sparks (1954) to aid engineers in 

achieving more optimal structural actions in both the arch-rib and tie-girder. The results 

showed very little effect on the moment in the arch rib due to variations in the ratio of second 

moments of area for the tie-girder to arch rib.  This early report further noted that 

presumption of the pin connection for the arch and tie girder results in appreciable error 

thereby justifying nearly all future work to use a fixed or moment connection.  Lastly the 

report results favor a smaller, more flexible arch cross section compared to that of the arch-

tie.  This last point will be examined further into this study. 
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2.3. TIED ARCH BRIDGE 

Prior to examining the analysis of the arch bridge, the specific bridge arrangement 

will be presented.  The present day tied arch derives from centuries of arch bridge 

construction.  Over the years arch bridges have three forms, closed spandrel, open spandrel 

and through arches. Closed spandrel arch bridges, see Figure 2.2, carry the roadway or 

weight above the arch, which is made of masonry blocks or concrete, which in turn transfer 

the load via compression 

 

 

 
to the foundations.  The region between the roadway and arch is closed with fill material.  

Open spandrel, see Figure 2.3, also carry the roadway or weight above the arch but are 

distinct in transferring load via a finite number of columns that, in turn, transfer the load to 

the arch which then transfers the load to the foundation via compression in the arch.  In each 

of these cases, the foundations are necessarily massive to resist the thrust of the arch at the 

ends.  Figure 2.4 depicts details from a true arch planned for a bridge spanning I-74 over the 

Mississippi River.  The footprint of this foundation for one arch rib is 81 feet long and 70 feet 

Figure 2.2.  Example of a Closed Spandrel Arch Bridge, Virginia 
Street Bridge, Reno, NV 
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wide.  The third form places the roadway under the arch, suspended by cables from the arch.  

The third form still required large foundations to resist the arch thrust and gravity loads.  

Finally in the late 19th century a tension tie girder connecting the ends of the arch rib and thus 

resisting the arch  

 

 

 

Figure 2.4.  True Arch Foundation - I-74 over the Mississippi River - Preliminary 

 

Figure 2.3.  Example of Open Spandrel Bridge, Hoover Dam By-
Pass Bridge, NV 

Arch
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thrust internally.  This development permitted the newly coined “bow-string arch” to rest on 

a much smaller foundation which supported only gravity loads. 

Tied arch bridges can consist of a single span or be configured as continuous span 

systems.  The single span bridges are almost always through arches with the tie girder at the 

deck level.  The continuous systems usually consist of three spans with a center full arch and 

the flanking spans being half arches.  These bridges can be arranged as half-through arches or 

as deck arches.  See Figure 2.5.  This paper is focused on the single span tied arch with some 

occasional references to other tied systems.  

 

 

Figure 2.5.  Tied Arches 

 

The tied arch is composed of the arch rib, tension tie-girder, and hangers as the 

primary components.  The tension tie-girder connects the ends of the arch rib converting the 

arch thrust to tension through the large, rigid, end connection referred to as the arch 

“knuckle”.  The arch supports the bridge deck and it’s supporting members via the hangers 

a) Through Tied Arch 

b) Continuous Through Tied Arch 

c) Continuous Deck Tied Arch 
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which connect to the tension tie-girder.  At each hanger/tie-girder connection, a floorbeam is 

connected to the tie-girder.  The floorbeam supports the stringers that support the concrete 

roadway deck and barrier curbs.  Between the arches lies a system of bracing.  The upper 

bracing lies between the arch ribs and resists wind loading and buckling of the arch rib 

members.  The lower bracings serve a similar purpose as the upper bracing in resisting wind 

loading.  Both bracing systems provide resistance to any longitudinal distortion or “racking”. 

2.4. TIED ARCH STRUCTURAL BEHAVIOR 

Overall structural arch behavior is demonstrated in Figure 2.1, a two hinged arch.  An 

arch having this type of loading and support conditions is shown in Figure 2.3 which depicts 

an open spandrel arch bridge.  The columns extending from the roadway deck to the arch 

below are easily envisioned as the point loads applied in Figure 2.1.  Moreover, the pin 

connections shown for the two-hinged arch of Figure 2.1 are also easily envisioned by the 

supports affixed to the canyon walls in Figure 2.3.  If, for Figure 2.1, we replace the three 

point loads with a uniform load and the pinned support conditions with fixed support 

conditions, the resulting structural arrangement is more typical of the closed spandrel arch 

bridge shown in Figure 2.2.  This section will focus on the structural action of tied arch 

bridges providing the reader with a general overview of the structural behavior of these 

bridges. 

Figure 2.6 portrays the member, loading and displaced shape for the tied arch bridge.  

The uniform load acts on the concrete roadway deck that is ultimately transferred to the arch 

hangers.     
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Figure 2.6.  Tied Arch Structural Arrangement 

 

The loading places the hangers in tension and displaces the arch rib downward.  The 

arch rib is restrained at each end, which as for the two hinged arch, produced an axial 

shortening and develops a compressive thrust in the arch rib.  See Figure 2.7b.  

Finally, as the arch rib exerts an outward thrust on the supports, the arch tie pulls the 

supports into equilibrium loading the tie in tension as shown in Figure 2.7c. 

From the standpoint of external statics the single span tied arch behaves in a 

determinant manner and reacts on the supporting substructure as if it were a simply supported 

beam.  Internally, however, the system is indeterminate with the behavior being dependent on 

the ratio of the tie stiffness to the rib stiffness.  In the classic bowstring arch the tie is 

predominantly a tension member with minimal bending stiffness.  In this system the vertical 

loads are carried almost exclusively by the arch rib.  The resulting proportions of the rib and 

lateral bracing are similar to what they would be if the system were in fact a “true” arch using 

a compression thrust block instead of a tension tie.  Many older steel tied arches are of the 

bowstring type, perhaps due to the more direct correlation of the analysis techniques for this 

system with those of a true arch.  As the stiffness of the tie, Ktie,  is 

Arch Rib 

Arch Tie-Girder 

Hangers 
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Displaced Arch 
and Tie Axis 
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Figure 2.7.  Tied Arch Structural Action 

 

increased relative to that of the arch rib, Karch,  it begins to function as a beam and to 

participate in carrying vertical loads to the supports.   Accordingly, the demands on the arch 

rib are reduced allowing its size to be reduced significantly as compared to that of a true arch 

of comparable span length.  Taken to the extreme, of course, higher values of Ktie/Karch imply 

the resulting tied arches would simply be beams with vestigial arches. 

While the two systems differ somewhat structurally, there are no great advantages of 

one system over the other.  Economics may favor the moment-tie types particularly where 

wide bridges are involved due to the smaller rib and bracing members.  From an appearance 
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standpoint the resulting rather large arch rib and accompanying large lateral bracing members 

of the bowstring arch may be at a disadvantage compared to the thinner ribs and lighter 

bracing of the moment tie systems.  Spreng (2003) has investigated the structural efficiency 

of tied arches and has developed recommendations for tie and arch proportions using a 

definition of efficiency as the ratio of “structural output” over “structural input”.  He defines 

“output” as the loading supported when the stress reaches the allowable level and “input” as 

the self-weight of the arch. 

One significant overall design parameter for arch design is the rise-to-span ratio.  

Spreng has investigated this parameter and concluded that for loading over half of the bridge 

a relatively flat arch with a rise-to-span ratio of 1:7 works well.  Conversely, for load over the 

entire span, a steeper arch with a ratio of 1:3 is the more optimal.  For tied arch highway 

bridge structures where the dead load is more-or-less uniform over the length of the bridge, 

but the loaded length and position of the live load varies, the optimal ratio is usually 

considered to be in the range of 1:4 to 1:6.  Designing within this range provides a reasonably 

efficient system in terms of the magnitude of the thrusts and moments to be carried in both 

the rib and the tie and the resulting amount of material required.  The resulting geometry is 

also usually visually pleasing, providing an arch profile that is neither too high nor too flat. 

2.4.1 Arch Rib.  This compression member is typically a welded box girder 

erected in sections spliced together.  For shorter spans it’s not uncommon for the rib to be a 

curved rolled I-section or for concrete the rib is typically has a rectangular cross section. 

2.4.2 Tie-Girder.  This element connects the ends of the arch and is either a 

welded box girder or an I-section such as plate girder.  Tied arch bridges can be categorized 

into two main categories depending on the action in the tie-girder.  Structures with a 
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relatively flexible tie-girder are termed a “bowstring” arch as the tie-girder carries mainly 

axial tension and has a small cross-section, hence the bowstring moniker.  Tied arch bridges 

having a stiffer, larger tie-girder are defined as a Langer girder system.  In this system, the 

tie-girder carries significant flexural demand.  This has the benefit of nearly eliminating 

flexural demands on the arch rib so that it is very nearly in pure compression.  This element 

is singularly most responsible for the tied arch being categorized as fracture critical.  The 

composition of more contemporary tie-girders is discussed further in this proposal.   

2.4.3 Hangers.  There are three commonly used hanger systems for tied arch 

bridges.  Vertical hangers are referred to as a “Langer” system.   The “Nielson” system 

having inclined hangers and an improvement to that system which is denoted the “Network” 

system.  The Network system was developed by Norwegian Per Tveit in the 1950s while the 

Nielson system was developed 30 years earlier.  The Langer system is further characterized 

as a bridge arrangement that has a relatively small arch rib cross-section in contrast to the 

much larger cross-section for the arch tie-girder.  The majority of the recent tied arch bridges 

are Langer tied arches.  For this project, all bridges have vertical hangers with a Langer-

girder arrangement.  The hangers or vertical suspenders are typically located every 30 to 40 

feet for long spans and are typically composed of bridge rope.  The hanger spacing for 

Nielson or Network hangers is smaller and so reduces the flexural demand on the tie-girder 

while providing additional stiffness in-plane and out-of-plane.  Not all hangers are rope 

hangers; in some variations on the tied arch such as the trussed tied arch, it’s common for the 

hangers to be I-sections.  Sets of four or two typically comprise the hanger when using bridge 

rope.  It’s common practice for the bridge rope to have a factor of safety of 4 as a minimum.  

2.4.4 Floor System.   Over time the deck or floor systems of tied arches (and 

trusses also) have evolved into transverse floor beam systems supporting longitudinal 
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stringers, which in turn support a transversely spanning mild reinforced concrete deck slab.  

And while other deck systems are, of course, possible, the majority of truss and arch bridges 

use this basic arrangement.  The floor beams are usually plate girders with a depth-to-span 

ratio of about 1:8.  Panel lengths are in the range of 40 to 50 feet, which provides for efficient 

truss framing and reasonable arch hanger sizes.  This panel length also works well with the 

use of rolled beams for stringers.  The stringers may or may not be made composite with the 

deck slab they support, although a noncomposite design will usually be the most economical.  

This economy results since the stringer is sized for the noncomposite negative moment over 

the floorbeams and due to its short span length it is not typically economical to vary the 

stringer section in the positive moment area, so the same section is used throughout.  Thus 

the stringer section alone is more than adequate to carry the positive moments and there is no 

reason to effect a composite connection. 

Where structural depth is a concern the stringers may be framed into the floorbeams.  

Various stringer-to-floorbeam connection types have been used in this situation ranging from 

a full moment connection with upper splice plates to something more akin to a semi rigid 

connection.  Alternatively, where structural depth is not a particular issue the stringers can be 

made continuous over the floorbeams, being supported on small bearings on the floorbeam 

top flange, Figure 2.10.  The latter arrangement is usually the more economical of the two 

options.  

Historically, designers have gone to great lengths to insure that the deck system does 

not participate with the main longitudinal support system, whether an arch or another type of 

system.  This has been accomplished by placing transverse relief joints in the deck slab at 

about every fourth or fifth panel point and by using an appropriate mix of fixed and 

expansion bearings to support the stringers.  These devices allow the deck to expand and 
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contract independently of the arch both during construction (when the slab is placed) and in 

service when loaded by live load.  The major drawback of such systems is the maintenance 

required by these relief joints themselves and the effect of the inevitable deck drainage that 

passes through them onto the steel below.  On the Page Avenue (Rte 364) arches these deck 

relief joints were eliminated.  And while still structurally separated from the arch itself the 

deck acts as one large continuous member instead of as a series of segmented slabs.  In the 

system used the three center stringers have a fixed bearing at every floorbeam.  The 

floorbeam top flanges are rather narrow and this fixity insures lateral buckling stability of 

these flanges.  Given the length of the floorbeams (85 feet+) the resulting stresses in the top 

flange due to any resulting lateral bending are quite small.  The center stringer is connected 

to the lower lateral system via a longitudinal truss at the center of the span that gathers all 

longitudinal forces to this point.  All other stringers are supported on expansion bearings.  It 

is important that stringers nearest the floorbeam-tie connection do not laterally restrain the 

floorbeam top flange.  Such restraint can lead to fatigue cracking in the floorbeam top flange 

to web weld caused by differential longitudinal movement between the tie and the stringer 

system.  

As an alternative to the traditional approach, some designers have structurally 

connected the floor system to the main longitudinal system (the tie girder in the case of a tied 

arch) to force the deck to participate with it.  By so doing the overall stiffness of the system is 

increased and the size (depth) of the tie girder may be somewhat reduced as axial tension 

and, to a perhaps lesser extent, bending moments, are shared by the deck.  These 

arrangements have been used in combination with orthotropic steel decks such as in the Port 

Mann, the Gorinchem and the Fremont tied arch bridges (Troitsky 1987; Chen and Duan 

2000).  In these cases the steel deck participates in carrying both dead and live load effects 



www.manaraa.com

19 
 

arising in the arch system.  This structural connection between the deck and the tie girder has 

not typically been used with concrete decks although the new US 20 Bridge at Dubuque, 

Iowa has been designed in this way (Binns, 2004).   For concrete decks, in order to limit the 

tension in the deck, it will be advantageous to make the deck connection to the tie using a 

closure pour after the majority of the deck has been placed.  In this way the deck participates 

only in resisting the residually applied dead loads and the live load.  

Figures 2.8 to 2.10 show various views of a contemporary tied arch. 

 

 

Figure 2.8.  Tied Arch Bridge 
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Figure 2.9.  View of Tied Arch floorsystem:  Stringers, Floorbeams, Lower laterals 

 

 

Figure 2.10.  View of Floorsystem and Arch Tie-Girders 
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3. BRIDGE DESCRIPTIONS 

 

3.1. JEFFERSON BARRACKS BRIDGE  

The Jefferson Barracks bridges span eastbound and westbound I-255 over the 

Mississippi River from St. Louis County, Missouri to Blank County, Illinois about 11 miles 

south of St. Louis, Missouri.  The bridges, built in 1984 and 1990, are about 4,000 feet from 

abutment to abutment and are mainly comprised of continuous, composite plate girder for the 

majority of the length.  A 910 foot long tied arch spans the main navigation channel, near the 

St. Louis bank.  The main span is comprised of the arch components, the roadway system and 

the arch bearings.   

The tied arch rise, from the centerline of the rib to the centerline of the tie girder, is 

182 feet.  The hangers are comprised of four 2-1/8 inch diameter ASTM A586 multi-wire 

bridge strand and are spaced at 49 foot centers.  The arch rib and tie girder are comprised of 

box sections and plate girders respectively.  The box sections typically measure 6 foot 3 

inches and the plate girders have a 12 foot web depth.  The structural steel for the rib and tie 

is AASHTO M222.  AASHTO M222 is similar to the ASTM A588 designation for high 

strength low alloy (HSLA) steel and includes structural steel applications with plate 

thicknesses 4 inches and under.  For these plates, ASTM A588 structural steel has a 

minimum yield strength, Fy, of 50 ksi and a tensile strength, Fu, from 65-70 ksi.  All 

structural steel for this bridge is specified as AASHTO M222 unless otherwise noted.  High 

strength bolts are used throughout the structure and conform to AASHTO M164, Type 3, 

similar to ASTM A325, Type 3.  The north and south arches of each bridge are spaced on 62 

foot centers permitting a 54 foot wide bridge deck with two 19 inch safety barrier curbs.  

Wind bracing, upper and bottom laterals, is provided between the arch rib (upper) and tie 
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girder (bottom).  The bottom laterals are placed at angles to the floorbeam and tie girders 

(thusly called diagonals) work with the floorbeams to resist wind loading.  The lower laterals 

are comprised of flanges (MC18) and a web plate.  Upper laterals (box members) are 

provided between and normal to the arch ribs, only at the intersection of the arch rib and 

hangers, thereby forming a Vierendeel truss to resist wind loading and buckling of the arch 

rib.  This simple upper bracing form is unusual in bridges, which typically contain diagonal 

members, but adds to the slender appearance of the bridges for aesthetics.  The Jefferson 

Barracks Bridge is shown in Figure 3.1. 

 

 

Figure 3.1.  Jefferson Barracks Bridge.  Photo from: http://bridgehunter.com/mo/st-
louis/jefferson-barracks/ 

 

The roadway system is comprised of the bridge deck, a reinforced concrete, 28-day 

strength of 3,500 psi, 8 inches thick deck, supported by W30 stringers spaced at 8 foot 

centers.   Diaphragms brace the stringers and are typically wide flange sections.  The 
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stringers are supported by the floorbeams spaced with the arch hangers at 49 feet centers.  

The floorbeams are comprised of welded plates, forming an “I” shape with two sets of web 

depths, 93 and 76 inches.  The flanges are 2 inches thick with two sets of widths, 19 and 24 

inches.  Between the stringers and floorbeams, steel shim plates are used as bearings to 

distribute load.  Typically two shim plates (1 ½ inches and a variable depth shim from 3/8 to 

5/8 inch) are used per location and are beveled in the transverse direction to match the cross 

slope of the floorbeam.  The plans show a four bolt connection between the stringer and 

floorbeam with a 1 inch diameter bolt in a 1 1/16 inch hole fully tightened. 

The bearings for the main span are cast steel conforming to AASHTO M192 (ASTM 

A486).  Components of the castings have specified heat treatment designations of Class 70, 

90 and 120.  Bearings of this era have upper and bottom shoes if designated as a fixed 

bearing whereas expansion bearings have an upper shoe but the bottom is replaced by a 

rocker or nest of rollers.  The bearings are also designated as fixed or expansion.  Fixed 

bearings constrain horizontal, longitudinal (bridge length) and transverse (bridge width) 

movement as well as vertical, downward, movement.  Expansion bearings allow movement 

in the longitudinal direction while constraining movement in the transverse and vertical 

downward direction.  Both fixed and expansion bearings permit longitudinal rotation 

(rotation about the transverse axis) through a pin.  The steel pins for the Jefferson Barracks 

bridge are 9 inch diameter and conform to AASHTO M222 with an ANSI surface finish of 

125.  The main bearings provide a bearing area of about 7 feet square and are about 6 feet 

tall. 

3.2. CITY ISLAND BRIDGE 

The City Island Bridge, see Figure 3.2, is a single structure spanning US 61 over the 

Mississippi River at Dubuque, Iowa.  The bridge was designed in the late 1970s with 
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construction completed in the early 1980s.  The total bridge length from abutment to 

abutment is approximately 2,827 feet.  The bridge is comprised of two continuous, composite 

plate girder spans flanking the tied arch, a 670 feet span over the navigation channel.   The 

main navigation channel is near the Wisconsin bank of the river.   The main span components 

are described further below.  

 

 

Figure 3.2.  City Island Bridge, Dubuque, Iowa.  Photo from: 
http://bridgehunter.com/ia/dubuque/604440/ 

 

The arch, span, 670 feet, has an arch rise, from centerline of tie girder to centerline of 

rib, of 132 feet.   The arch rib and tie girder are both welded steel (ASTM A588) box 

members.  The tie girder is approximately 9 feet 10 inches tall by 3 feet wide whereas the 

arch rib is 4 feet 3 inches tall by 3 feet wide.  The arch has 15 hangers spaced at 41 feet 10.5 

inches.  The hangers are composed of four 2 inch diameter wire rope specified to ASTM 
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A603.  The arches are spaced at 79 feet center to center and provide for a 75 feet 6 inch 

concrete bridge deck arranged for two 35 feet roadways, two 17 inch safety barrier curbs and 

a single 24 inch median barrier separating the eastbound and west bound traffic.  The upper 

laterals, bracing the arch, are comprised of diagonals and struts (transverse members) are 

built-up box members typically having dimensions 16 x17 inches.  The lower laterals 

between the tie girders and working with the floorbeams are also box members having 

dimensions 17 x 22 inches.  All laterals for the City Island Bridge are specified to be ASTM 

A36 steel. 

The bridge deck is nine inches thick and supported by nine stringers, W33x118, 

spaced at 8 feet 6 inches.   C12 sections brace the stringers throughout their length at regular 

intervals.  The stringers are supported by the floorbeams spaced with the arch hangers at 41 

feet 10 ½ inch centers.  The floorbeams are comprised of welded plates, forming an “I” shape 

with a web depths of 102 inches.  Intermediate floorbeams have flanges that are 2 inches 

thick and 20 inches wide.  End floorbeams have flanges with a 1 inch thickness and 18 inch 

width.  The floorbeams are specified to be ASTM A588 steel.  Bearing and floor system 

expansion between the stringers and floorbeams is accommodated by ½ inch by 12 inch 

tetrafluoroethylene (TFE) surfaces, guide blocks, beveled fill plates.  Where fixed bearings 

are located they also have TFE surfaces with beveled fill plates.  All stringer bearings have a 

four high strength bolt connection to finger tight with lock washers. 

The bearings for the main span are cast steel conforming to ASTM A486, fy equal to 

60,000 psi.  Components of the castings have specified heat treatment designations of Class 

90.  The fixed bearing assembly has an upper shoe with a spherical surface while the lower 

show has a domed surface.  These contact surfaces along with all remaining main bearing 

contact surfaces have a ANSI finish of 500.  This spherical surface for the fixed bearing 
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provides rotational capacity in the longitudinal and transverse directions.  The expansion 

bearings have an upper shoe bearing on a nest of rollers which form a rack and pinion system 

with the lower bearing plate.  The rollers provide longitudinal movement only and have a 14 

inch diameter with two 16 inch guides each.  Overall the bearings provide 5 feet on each side 

for the fixed bearing and 6 feet on each side for the expansion bearing.  The bearing 

assemblies are approximately 4 feet tall. 

The City Island Bridge has a unique feature in conjunction with the main bearings at 

each main pier.  Two live load supports are positioned at the end floorbeam on each side of 

the centerline of bridge.  These supports are each comprised of two 1 ¾ inch link plates 

connected via 2 ¾ inch pins to plates welded to the floorbeam bottom flange and an anchor 

plate atop the pier.  This live load bearing link is used at both main piers limiting the 

displacement of the floorbeam under live load and distributing the live load reaction to four 

bearing devices at each pier.  The purpose of the live load bearing links is to ensure the 

deflection of the end floorbeam, which indirectly supports the main expansion joints, is 

compatible with the multi-girder approach spans.  Without the live load bearing links the end 

floorbeam would displace more than the approach span at the expansion joint thus causing a 

differential displacement (longitudinally) across the joint leading to premature wear and long 

term maintenance concerns.   

3.3. PAGE AVENUE BRIDGE 

The Page Avenue Bridges, see Figure 3.3, span eastbound and westbound Rte 364 

over the Missouri River between St. Louis County and St. Charles County at St. Louis, MO.  

These bridges were design in the late 1990s.  The total bridge length from abutment to 

abutment is 3, 238 feet.  The bridge is composed of five units, two precast, prestressed I-

girder units with lengths 305 feet and 942 feet and two composite steel plate girder units with 
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lengths of 652 feet and 768 feet.  The main span is positioned over the navigation channel 

near the St. Charles bank. 

.   

 

Figure 3.3.  Page Avenue Bridge (Rte 364), St. Louis, MO.  Photo from: 
http://bridgehunter.com/mo/st-louis/page/ 

 

The tied arch span is 617 feet with an arch rise from the centerline of the tie girder to 

centerline arch rib is 124 feet -8 inches.  The arch rib is a welded box member having 

dimensions, height 5.6 feet and width 3.2 feet.  The tie girder is a bolted box member having 

dimensions, height 10 feet and width 3.4 feet.  Both the arch rib and tie girder use ASTM 

A709 Grade 50W steel.   Each arch has 15 hangers spaced at 38 feet 6.5 inches that are each 

composed of four 2 inch bridge (strand) rope.  The arches are spaced at 90 feet 10.5 inches 

center to center providing for an 86 feet wide bridge deck having two 16 inch safety barrier 

curbs.  The upper laterals, bracing the arch, are comprised of diagonals and struts (transverse 

members) are built-up box members typically having dimensions 15 x 30 inches.  The lower 
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laterals between the tie girders and working with the floorbeams are wide flanges, W14.  All 

laterals for the Page Avenue Bridge are specified to be ASTM A36 steel. 

The bridge deck has a thickness of 8.5 inches and is supported on W30x108 stringers 

spaced 9 feet 10.5 inch centers.  Bent plates, 26 inches deep, brace the stringers throughout 

their length at regular intervals.  The stringers are supported by the floorbeams spaced with 

the arch hangers at 38 feet 6 ½ inch centers.  The floorbeams are comprised of welded plates, 

forming an “I” shape with a web depths of 127 inches.  Intermediate floorbeams have flanges 

that are 2 inches thick and 20 inches wide.  All floorbeams have flanges with a 2 3/8 inch 

thickness and 21 inch width.  The floorbeams are specified to be ASTM A709 Grade 50 steel.  

Bearing and floor system expansion between the stringers and floorbeams is accommodated 

by laminated neoprene bearings with upper sole plates and polytetrafluoroethylene (PTFE) 

surfaces and stopper plates.  Slotted holes are used in the sole plates with anchor bolts.  

Where fixed bearings are located they omit the TFE surfaces.  All stringer bearings have a 

four high strength bolt connection to finger tight. 

The bearings for the main span are POT bearings, a bridge bearing that evolved from 

older cast steel bearings to create a high load, multi-rotational bearing, having a low profile 

as well as less cost and production time.  The POT bearing steel is specified to ASTM A709 

Grade 50W.  As with the other bridges, there are fixed and expansion POT bearings.  

Generally the POT bearings can be described as an assembly having an upper shoe and lower 

shoe (POT).  The upper shoe provides for translation in the longitudinal direction (for 

expansion bearings) and is comprised of a single steel plate having a thin stainless steel plate 

affixed to the underside along with guide bars preventing translation in the transverse 

direction.   The lower shoe is constructed of four main components, the lower expansion 

plate which is welded to a steel piston that sits in the bottom plate or POT (cylinder) atop a 
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compressible material such as elastomer confined by the POT.  The lower expansion plate 

has a PTFE affixed to the top that slides with the stainless steel plate above on the upper 

plate.  The piston is welded to the lower expansion plate and provides a transition from the 

rectangular plate to the circular POT below.  This piston acts as a rigid body as it compresses 

the confined elastomer in the POT thereby permitting rotation in the longitudinal and 

transverse directions.  Such bearings are referred to as multi-rotational bearings.  Fixed POT 

bearings are similar but eliminate the stainless steel, PTFE and lower expansion plate.  These 

bearings provide approximately 7 feet on each side for the fixed and expansion bearing.   

The Page Avenue shares a unique feature with the City Island Bridge.  Both use a live 

load support in conjunction with the main bearings at each main pier.  Page Avenue Bridge 

has only one live load support and it is located at the mid-span of the end floobeam.  The 

Page live load support also differs dramatically from the complicated link used with the City 

Island Bridge.  The Page live load support is comprised of elastomeric neoprene bearing pad 

sandwiched between an upper and lower sole plate.  The upper sole plate for the fixed pier is 

bolted to the end floorbeam flange whereas the lower sole plate is bolted to a concrete 

pedestal atop the Pier 4 concrete bearing beam.  Thus the overall height of the fixed live load 

bearing is just 5 inches.  That is greatly reduced over the 3’-6” links on the City Island 

Bridge.  The live load support for the expansion pier, Pier 5, is similar to the fixed bearing 

with the addition of a PTFE and stainless steel plate thus increasing the overall height to 5 

3/8 inches.    

3.4. TENNESSEE RIVER BRIDGE 

Located in northwest Kentucky, not far from the confluence of the Tennessee River 

and the Ohio River are twin tied arch bridges spanning I-24 over the Tennessee River.  These 

bridges are just east of Gilbertsville in Livingston County, Kentucky.  These bridges were 
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designed in the late 1960s.  Construction of the bridges and project began in 1971 and ended 

in 1974.  The total length of the bridge is 2,108 feet and 10 inches and is comprised of three 

units.  These units include the main span and the approach spans on either side of the main 

span.  The north and south approach spans are continuous, composite plate girders having 

spans totaling 782 feet each.   The main span is situated over the navigation channel located 

in middle of the river.   

The arch main span is 535 feet 4 inches and has an arch rise of 88 feet 10 5/8 inches 

from centerline of the tie girder to centerline of the arch rib.  The tied arch has 13 hangers 

spaced at 38 feet 2 inches, each hanger is composed of four 1 5/8 inch diameter bridge rope 

specified to ASTM A586.  The arch rib is welded box member having dimensions of 2 feet 1 

inch width and 3 feet 5 inches height.  The tie girder is also a welded box member with the 

webs offset inward to the interior of member.  The overall dimensions are 3 feet 1 inch width 

and 9 feet height.  All arch rib and tie girder material is A572 or A588 having a minimum 

yield stress, Fy, of 50 ksi.  The arches are spaced at 46 feet providing for a bridge deck 

dimensioned at 43 feet.  Between the arches and tie girder are the upper and bottom bracing 

(laterals) members.  The upper laterals, bracing the arch, are comprised of diagonals and 

struts (transverse members) and are built-up “I” members having variable depth.  The web of 

the diagonal and struts are deeper near the arch rib and shorter midpoint between the arches.  

The web varies from approximately from 3’-5” to 2’-3”.  The flanges are either 15 x ¾ inches 

or 15 x 7/8 inches depending on the location.  The lower laterals between the tie girders and 

working with the floorbeams are wide flanges, BP14.  Three types of BP14 laterals are used 

by pounds per foot, they are 102, 89, 73.  All laterals for the Tennessee River Bridge are 

specified to be ASTM A36 steel.  The I-24 Bridge is shown in Figure 3.4. 
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Figure 3.4.  US 24 Bridge over the Tennessee River, near Paducah, KY.  Photo from: 
http://bridgehunter.com/ky/marshall/tennessee-24/ 

 

The bridge deck is supported by five stringers, W30x116 or W30x99, spaced at 9 feet 

3 ¾ inches bearing atop floorbeams.    Channels are used to brace the stringers throughout 

their length at regular intervals.  C15s are used at the floorbeam locations and C18s are used 

within the spans.  The stringers are supported by the floorbeams spaced with the arch hangers 

at 38 feet 2 inch centers.  The floorbeams are comprised of welded plates, forming an “I” 

shape with a web depths of 70 inches.  Floorbeams have flanges that are vary from 7/8-1 7/8 

inches thick and 16 inches wide.  Bearings for the floor system consist of 12 x 10 ½ inch 

steel blocks of differing height between the stringer and floorbeam.  Each connection has 4-

high strength bolts tightened to finger tight and jam nuts.  Expansion bearing have a 1/8” gap 

between the flange and the nut.  Structural steel in the floor system including the floorbeams 

are specified to be ASTM A36 steel.   
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The bearings for the main span are very similar to the cast steel bearings noted for the 

Jefferson Barracks and City Island Bridges.  However, despite the design and construction 

predating both of those bridges the bearings for the Tennessee River Bridge are not cast steel 

but fabricated structural steel specified to ASTM A36 and A588.  The fixed bearing assembly 

has a small upper shoe that sits atop a 6 inch pin, which permits longitudinal rotation.  The 

lower shoe is fabricated plate with a horizontal flat plate at the end.  The expansion bearing is 

similar but at the bottom of the lower shoe is a roller plate permitting longitudinal movement.  

Both the fixed and expansion bearings sit atop a steel fabricated grillage of plates that are 

buried in the concrete bearing beam of the main piers.  Overall the bearings provide 4’- 6” on 

each side for the fixed bearing and expansion bearing.  The bearing assemblies are 

approximately 5’- 3” tall overall with only 3’ above the concrete bearing beam. 

The characteristics of the aforementioned bridges are noted in Tables 3.1 and 3.2. 

Table 3.1.  Bridge Properties 

Bridge Span 
(feet) 

Rise 
(feet) 

Panels Rise/ 
Span 

Rise to 
Span 
Ratio 

Itie  
 

Irib 

Ratio 
Itie:Irib 

Ratio 

Atie:Arib

Jefferson 

Barracks 
910 182 18 0.200 1:5 

2,351,846 in4 

270,787 in4 
8.7 1.23 

City Island 670 132 16 0.197 1:5.10 
711,800 in4 

170,900 in4 
4.2 0.998 

Page 

Avenue 
617 124 16 0.201 1:4.97 

762,985 in4 

277,074 in4 
2.8 0.923 

Tennessee 

River 
535 88.9 14 0.166 1:6 

381,131 in4 

36,387 in4 
10.5 1.20 
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Table 3.2.  Bridge Weights 

Bridge 
Span 
(feet) 

Width 
(feet) 

Dead Load 
 Plans (kips) 

Weight 
(psf) 

Dead Load 
SAP2000 

(kips) 
I/A 

Jefferson 

Barracks 
910 62.0 17,568 311.0 17,136 769 

City Island 670 79.0 - 244.0 12,924 464 

Page Avenue 617 90.88 14,848 264.0 14,800 700 

Tennessee River 535.33 46.00 6,256 254.0 6,016 218 

 

3.5. BRIDGE MATERIALS 

The desire to achieve a better product drives the innovation and subsequent change of 

construction materials for structures.  To achieve a more durable product having reliable and 

robust stress-strain properties that is less prone to fatigue and fracture is the catalyst for 

change in the bridge metal industry. This is especially true of fatigue and fracture due to the 

dynamic nature of the loading on bridges versus the largely static loading for most buildings.  

The first metal bridge, for example, the Coalbrookdale bridge, built in 1776 (Cortright, 2003) 

in the United Kingdom is made of iron.  Nearly one hundred years later construction of the 

Eads Bridge in St. Louis, Missouri, USA brings a new material, steel, to replace iron.  At the 

time Eads realized that longer spans and heavier loads would push the limits of the then 

current practice for metal bridges of using a robust structural arrangement of members, 

wrought iron for tension members, and cast iron for compression members (Miller, 1999).  

Although limited in production in 1867 United States steel was capable of providing both the 

necessary tensile and compressive capacity in one materal (Miller 1999).  Advances in 

production (Bessemer process) and the science of materials helped make structural steel the 

construction staple it is today.  This section captures the various steel material and governing 
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specifications used on the bridges in this study, presenting the benefits and drawbacks of 

each and culminates with the current state of the practice for structural steel in arch bridges in 

the USA.    

3.5.1 3AASHTO Material Specifications.  The American Association of State 

Highway Officials (AASHO) began in 1914 to address highway issues and to advocate for 

State priorities on the national level (Goguen, 2011).  Certainly one landmark 

accomplishment of the organization, now the American Association of State Highway and 

Transportation Officials (AASHTO), was to develop standard specifications for the design, 

materials and construction involved in highway facilities, including bridges.  Pushed forward 

by the industrial revolution, the American Society for Testing and Materials (ASTM) was 

founded in 1898 following attempts to standardize the composition of rail steel 

(http://www.astm.org/HISTORY/hist_chapter1.html).  In 1901, with AASHO yet to form for 

another 13 years, ASTM published, as one of its first documents, “Structural Steel for 

Bridges”.  Today there continues to be much overlap between AASHTO and ASTM as both 

cover many of the same material specifications, in this case with respect to steel for bridges.  

As the material specifications remain technical the same with only minor administrative 

differences, AASHTO Material Specifications have incorporated the specific ASTM into the 

language of the former code noting the applicable differences for substitution.  Common 

equivalent specifications for bridge materials are noted in Table 3.3. 

Table 3.3.  AASHTO and ASTM Material Specifications 

AASHTO Subject Matter ASTM 

M164 
High Strength Bolts (Fu ≥120 ksi, Dia. ≤ 1.0 inch) 

(Fu ≥105 ksi, 1.0 inch < Dia. ≤ 1.5 inch) 
A325 
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Table 3.3.  AASHTO and ASTM Material Specifications (cont.) 

M 222 
High Strength Low Alloy (up 50 ksi Minimum Yield 

Point) with Atmospheric Corrosion Resistance 
A588 

M 223 High Strength Low Alloy Steel A572 

M 232M/M232 Zinc Coating (Hot Dip) A153 

M253 High Strength Bolts (Fu ≥ 150 ksi) A490 

M270M/M270 Structural Steel for Bridges (36 ksi  ≤  Fy ≤ 100 ksi) A709/A709M 

M291 Carbon/Alloy Steel Nuts A563 

M292M/M292 Carbon/Alloy Steel A194 

M293M Hardened Steel Washers F436 

M298 Zinc Coating (Mechanical) B695 

 

3.5.2 Arch Bridge Steel Material Specifications.  Iron (Fe), Carbon (C) and 

Manganese (Mn) are the principal constituents of steel with alloys added to attain improved 

strength, ductility, as well as fatigue and fracture resistance.  Carbon is primarily responsible 

for the strength of the early steels, referred to as Carbon controlled steels.  These early steels 

had yield strengths between 36 and 42 ksi.  However, while Carbon increases strength it also 

decreases ductility and weldability.   Improvements to the Carbon controlled steels led to 

several new structural steel categories: High Strength, High Strength Low Alloy and 

Quenched and Tempered.  High Strength and High Strength Low Alloy steel has yield 

strengths between 42 and 65 ksi with 50 ksi being the most common.  To achieve this 

increase in strength small amounts of the elements Columbium (Cb) and Vanadium (V) are 

added to the Carbon-Manganese base.  The additional of other elements, Copper (Cu), 

Chromium (Cr) and Nickel (Ni) significantly increase the atmospheric corrosion resistance 
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nearly four times that of A36 steel (Wright, 2012).  Finally there are the Quenched and 

Tempered, Q&T, steels which have yield strengths of 90-100 ksi.  These strengths these 

steels reach is as much due to the thermal processes (normalizing or quenching/tempering) as 

the chemistry of the steel.  Today, a Thermal-Mechanical Controlled Processing is used to 

high performance steels much more precisely thus eliminating sensitivity to narrow fields of 

deviation in composition. The various steel material specifications encountered in the design 

plans of the bridges in this study are covered below in the ASTM numerical order. 

3.5.3 ASTM A36. A basic Carbon-Manganese steel having a minimum yield 

strength of 36 ksi.  This specification was adopted in 1960 as the final evolution Carbon-

Manganese steel (Wright, 2012).  Throughout the 1960s, 1970s and into the 1980s, A36 steel 

is ubiquitous in steel construction everywhere, used in bridges at first for all steel but as 

secondary members in late 80s and early 90s.  By the early 1990s as the steel industry 

changes and scrap steel is recycled more and more the resulting steel product contains more 

alloy elements thereby providing steel with yield strengths meeting Grade 50.  So for roughly 

the same price a higher strength could be used.  This change prompted the creation of ASTM 

A992, which provides for minimum yield strength of 50 ksi but addresses the wider 

variability in composition.  A36 and A992 are included in AASHTO M270M. 

3.5.4 ASTM A572 (AASHTO M223).  A high strength low alloy steel having 

yield strengths from 42 ksi to 65 ksi though the most commonly produced grade is Grade 50 

(Fy = 50 ksi).  This steel was introduced in 1966 in Grades 42, 50, 60 and 65.  Grades 42 and 

50 could be used for riveted, bolted and welded bridge applications.  Grades 60 and 65 were 

limited to riveted and bolted bridge applications.  Of course, riveted construction is rarely 

used in the current construction market.  For ASTM A572, Grade 50 plate thickness is 

limited to less than or equal to 4 inches.  A572 is a low alloy steel, where alloys are typically 
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Columbium (Cb) and Vanadium (V) that are included in small amounts, hence the moniker, 

low alloy.  Vanadium, for example, is generally less than 0.12%, yet increases rupture 

strength, hardness and abrasion resistance.  Columbium increases the yield strength.  Though 

still available today, this steel material and the toughness requirements so necessary for 

bridge applications can be specified through ASTM A709/AASHTO M270M.   
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4. REVIEW OF LITERATURE 

4.1. PUBLISHED LITERATURE 

There are many objectives in completing a review of pertinent literature.  Those 

objectives are varied and stretch from “gaining methodological insights” to “distinguishing 

what has been done from what needs to be done” (Randolph, 2009).  The following literature 

review follows on the latter theme – demonstrating what literature is available for tied arch 

bridges, the categories which that information falls into, and finally a review of what is not 

available.   The categories for the literature are: Analysis, Buckling, Design, Dynamics, 

Structural Health Monitoring and Construction.  A brief discussion of the proprietary 

information concludes this section. 

The literature selections are from the following journal and scientific database sources: 

 Academic Search Complete  

 American Society of Civil Engineers (ASCE) – Civil Engineering Database 

1970-present   

 ASCE - Journal of Bridge Engineering   

 ASCE – Journal of Engineering Mechanics 

 ASCE – Practice Periodical on Structural Design and Construction 

 ASCE - Journal of Structural Engineering 

 Elsevier’s Journal of Constructional Steel Research 

 Elsevier’s Engineering Structures  

4.2. ANALAYSIS OF TIED ARCH BRIDGES 

For the purpose of this study, contemporary, describes authors and references in the 

computer age or in a period of widespread use of computers in structural analysis.  Thus 
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Nettleton and Torkelson (1977), Beyer (1984), Hall and Lawin (1985), Xanthakos (1994), 

Brockenbrough and Merritt (1994), Fu and Wang (2015) all provide contemporary reference 

to the analysis of arches and in particular tied arches.  Each reference provides limited 

information and the material discussed varies by topics associated with tied arches.   

4.2.1 Arch Bridges.  Nettleton and Torkelson (1977), of the Federal Highway 

Administration (FHWA), produced a reference to address topics of steel and concrete arch 

bridge design not previously examined.  The work includes open spandrel arch bridges and 

through arch bridges.  Specifically the document covers wind stress analysis and deflection, 

stress amplification due to deflection, rib shortening moments, plate stiffening, and 

calculations for preliminary design.  Additional topics include construction of arch bridges.  

Planar, two dimensional analysis is used throughout the text and the design uses Allowable 

Stress methodology.  Still the reference is valuable as it presents topics beyond arch analysis 

and can be consulted for analysis and design of arch members not covered elsewhere.  

Member details for static loading are easily developed; however, no information is presented 

on the overall dynamic characteristics of arch bridges.  It does have a short section on wind 

induced vibration on specific members – tied arch hangers and open spandrel arch columns.  

The examples of bridges impacted by wind are dated though the analysis and outcomes are 

still in use today.  The equation for vortex shedding induced vibration is noted below and 

remains in use to evaluate hangers (bridge rope), hangers (H members), cables, and truss 

members (H or I shapes). 

	   Equation 4.1 

  Equation 4.2 
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Where: 

V = wind speed, feet per second. 

S = Strouhal Number  

D = Characteristic Dimension, ft 

Alternately, the member frequency is given as:  

 Equation 4.3 

And which has been expanded on by C.C. Ulstrup as noted in Brockenbrough and 

Merritt (1994) to include flexural and torsional components as well as axially loaded 

members. 

1
/

 Equation 4.4 

Where: 

, = natural frequency of a structural member, frequency for mode, n = 1, 2, 3…. 

knL= eigenvalue for each mode. 

K = effective length factor 

L = length of the member, inches 

I = moment of inertia, in4, of the member cross section. 

a = Coefficient dependent on the physical properties of the member 

 = /   For bending 
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 = /   For torsion 

  = Coefficient depending on the physical properties of the member 

 = /   For bending 

 =   For torsion 

E = Young’s modulus of elasticity, psi 

G = Shear modulus of elasticity, psi 

γ = weight density of member, lb/in3 

g = gravitational acceleration, in/s2 

P = axial force (tension positive), lb 

A = Area of member cross section, in2 

Cw = Warping constant 

J = Torsional constant 

Ip = Polar Moment of Inertia, in4 

m = mass per unit length of the member 

4.2.2 Preliminary Analysis and Hanger Adjustment of Tied Arch Bridges.  

Bryer’s (1984) thesis is focused on the preliminary design of tied arch bridges and hanger 

adjustments.  In this paper, Beyer provides a brief history of the tied arch bridge and goes on 

to present the effects of several parameters on tied arch behavior.  The parameters include 

rise to span ratio; ratio of moments of inertia of rib to tie; ratio of areas of the rib and tie; and 
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hanger spacing.  Beyer’s analysis included two arch bridges having a rise to span ratio of 

1:5.9 and 1:5.  The results of the parametric study are presented in terms of moment influence 

lines for both rib and tie; hanger forces, rib and tie deflection and the portion of the live load 

carried by the rib and by the tie.   Breyer demonstrates through moment influence lines that 

when the arch rib cross-sectional area is 60% of the arch tie cross-sectional area and the 

moment of inertia of the arch rib area is 5% of the moment of inertia of the arch tie area then 

the moment in the arch tie is on an order of two times greater than the moment in the arch rib.  

As the ratio of cross sectional area and moments of inertia each approach unity, the positive 

moments for the arch rib remain smaller, though not significantly so, than the arch tie 

whereas the negative moments for arch rib and tie are nearly equal.  For the case where the 

cross sectional area of the arch rib is three-halves greater than that of the arch tie and the 

moment of inertia for the arch rib area is 20 times greater than that of the arch tie, the arch rib 

carries a large portion of the moment whereas the arch tie carries a very small amount.  For 

the abo ve analysis, the tied arch structure had 16 panels over the length.   Beyer also 

demonstrates the hanger forces for the stiffer arch rib and slender arch tie carry most of the 

live load and loads diminish in magnitude toward the mid-span of the bridge.  Conversely it 

is shown that for the case of slender arch rib and stiff arch tie, the live load is carried through 

the arch tie via flexure.  In this case, the magnitude of the hanger forces increase toward the 

center of the bridge.  He concludes the paper with a design example emphasizing the 

preliminary design process using the Allowable Stress Design methodology in compliance 

with the 1977 AASHTO.  Breyer’s work does not include dynamic analysis of tied arch 

bridges. 

4.2.3 Design of Steel Tied Arch Bridges: An Alternative.  In 1985 Hall and 

Lawin, of Bridge Software Development International (BDSI), published an innovative paper 
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for the analysis and design of an alternate to steel tied arch bridges.  They proposed and 

developed a tied arch bridge having a post-tensioned concrete arch tie girder..  The effort was 

partially funded by the American Institute of Steel Construction (AISC), an unusual partner 

for a partial concrete alternate.  To this author’s knowledge the publication remained in 

obscurity until possibly the mid 2000s when the concept of a post-tensioned, concrete arch tie 

girder was used for a tied arch spanning the Raccoon River at Des Moines, IA.   

The impetus for the innovative approach by Hall and Lawin is the lack of overall 

redundancy inherent with the arch-tie girder system.   As a non-redundant tension member 

the arch tie-girder is fracture critical.  Thus should the arch-tie fracture and that fracture 

propagate through the arch-tie cross-section anywhere along its length the entire bridge is 

likely to fail catastrophically.  These concerns follow the 1978 Federal Highway 

Administration (FHWA) Technical Advisory, T 5140.4, advising owner agencies of known 

defects in tie girders of existing tied arch bridges.  Hall and Lawin state as their objective – 

“…use modern techniques to reduce or eliminate the non-redundant members, make the 

structure less expensive to construct, make more of the components work more efficiently, 

eliminate as many of the pieces of the structure as possible, reduce the field labor, 

particularly the elimination of falsework.”    The innovative cross section is shown in Figure 

4.1. 

The bridge proposed includes many of the same overall structural elements as a 

typical tied arch bridge: steel box arch rib, concrete arch tie, hangers between the rib and tie, 

steel floorbeams, and a concrete deck.  Most notably absent are the longitudinal stringers and 

upper and lower bracing. Special features of the proposed arrangement are: external dead 

load post-tensioning; precast concrete superstructure units that include monolithically cast 

arch tie girders and bridge deck that, as a unit, is composite with steel floorbeams.   
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Figure 4.1.  Alternate Cross Section from Hall and Lawin (1985) 

 
The length of the precast units is about the same as a typical tied arch panel thereby 

having one hanger unit per arch for each precast section.  While the concrete sections are 

heavier there is little to no increase in superstructure weight as stringers, bearings, and 

diaphragms usually associated steel bridge floor systems are eliminated.  The precast units 

are match-cast and keyed for erection similar to precast, post-tension box girder bridges.  

Though the industry standard is for longitudinal external post-tensioning, this specific 

alternate uses longitudinal internal post tensioning uniformly spaced around the perimeter of 

the section.  Based on experience in the industry challenges for this type of system will be 

inspection and maintenance of the post-tensioning.  The dead load thrust of the arch ribs is 

taken by the post-tensioning set up as the arch rib and floor system is erected.  These 

tensioning elements are located above the precast concrete deck units and outside of the 

roadway behind the roadway barriers.  This is similar to how the lower anchorages of cables 

are protected on Cable Stayed Bridges.  With the steel tie girder eliminated, all of the major 

splices are eliminated also and with the dual post-tensioning system, concrete section, and 

additional post-tensioning ducts provided for, the lack of redundancy is eliminated.  Further 

advantages of this system include:  reduction of stress joints, reduced structural steel weight, 
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and more efficient structural performance.  The alternate does have disadvantages, the most 

prolific include: construction requires tiebacks or falsework towers; post-tensioning generally 

requires a specialty subcontractor, and the owner has a deck which cannot be removed and 

replaced while the bridge remains in service.  Hall and Lawin also point out that a relatively 

high concrete strength (28-day strength, f’c = 6 to 8ksi) is necessary for this new arrangement 

versus that typically used.  While that certainly may have been true at the time the study was 

published, major bridges now routinely use precast concrete compressive strengths up to 

10ksi.   

Lastly, the bridge parameters used in the study for the alternate arrangement is well 

within the scope of this study.  The tied arch has a span of 620.5 feet, a rise of 128 feet (rise 

to span ratio of 1:4.85) and a distance of 91 feet center of arch to center of arch.  The bridge 

has 17 panels spaced at 36.5 feet.  The analysis and design presented covers the traditional 

elements in details with an added focus on the post-tensioning.  Hall and Lawin do not 

consider wind effects on the suspended superstructure or other dynamic input and subsequent 

bridge performance.  Moreover, the stability of the arches, without lateral bracing, is also 

notably absent. 

4.2.4 Theory and Design of Bridges and Structural Steel Designers Handbook.  

Xanthankos (1994) along with Brockenbrough and Merritt (1994) are detailed handbooks on 

bridge design and structural steel design respectively.  Each reference has a chapter dedicated 

to arch bridges and include a variety of arch including two and three hinged arches, fixed 

arches, spandrel arches and through arches such as tied arches.  Each reference demonstrates 

the use of Strain Energy Method to determine the bending moments, axial and shear forces at 

any section of the structure.  Up to the point of analysis, the references are somewhat parallel 

then Xanthakos delves into a broader treatment of topics relevant to all arches.  Those topics 
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include but are not limited to temperature effects, elastic rib shortening, support 

displacements, buckling and geometrical imperfections, concrete arch topcis, fixed and 

hinged arches, multiple arches, bowstring arches, parametric and optimizations and finally 

design codes.  In contrast, Brockenbrough and Merritt provide background on arch form, 

erection and parameters involved in the geometry and design of arches.  They follow with a 

litany of arch bridge descriptions, providing detailed information for each entry.  Finally a 

design example is presented for the major elements (arch rib, arch tie, floorsystem) for the 

Glenfield Bridge at Neville Island, Pennsylvania.  Neither Xanthakos nor Brockenbrough and 

Merritt provide guidance on the dynamic behavior of arch bridges, particularly tied arch 

bridges. 

4.2.5 Computational Analysis and Design of Bridge Structures.  Fu and Wang’s 

(2015) Computational Analysis and Design of Bridge Structures is one of the most recent 

additions to reference books on bridge engineering.  The book is informative, timely, and as 

it pertains to computer modeling will be a well-used classic reference.  The material is 

presented in three parts:  general, bridge behavior and modeling, and special topics of 

bridges.  In the general portion topics include an introduction of bridges and current 

analytical methods including numerical methods with subsections on finite elements, time 

dependent analysis and live loading via influence lines or surfaces.  The second part, Bridge 

Behavior and Modeling, focuses on each of the current and relevant bridge types:  reinforced 

concrete bridges, prestressed/post-tensioned concrete bridges, curved concrete bridges, 

straight and curved steel bridges, straight and curved steel box girder bridges, arch bridges, 

steel truss bridges, cable stayed bridges and suspension bridges.  For each major bridge 

category the authors provide further information on the main elements of the bridge, special 

analytic topics germane to that bridge type, and an example to illustrate the topics developed.  
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Of particular interest for this study are structural computer modeling, design of arch bridges, 

and arch bridge construction which are summarized below. 

Fu and Wang (2015) provide structural computer modeling techniques for many 

different bridge types and computer programs.  The information provided combines into one 

location references from academia and industry on finite element modeling of bridges.  

Modeling techniques are provided for reinforced concrete slab bridges, segmental bridges, 

slab on girder bridges, arch bridges, cable stayed bridges and suspension bridges.  Modeling 

topics include element types (beams, frames, plates, shells, and solids) as well as topics such 

as concrete cracking, composite behavior, torsion, shear lag, and bracing etc. 

The chapter on arch bridges provides background information, ideal geometry for 

arches, and modeling of major arch elements: ribs, deck, hangers and discusses stability.  

Stability of arches is also discussed further in a chapter on advanced topics for bridges.  The 

authors provide a small glimpse into the modeling and design of arches with case studies on 

bridges located in China thereby providing a new perspective to many readers.  One of the 

bridges, a tied arch concrete fill steel tube (CFST), in Linyi, People’s Republic of China is 

featured. 

Fu and Wang (2015) provide details for vertical/horizontal construction using the 

Yajisha Bridge.  The Yajisha Bridge is a continuous half-thru tied arch, over the Pearl River 

located in Guangzhou, Guangdong, China.  Additional details are provided in Section 4.2.   

Fu and Wang (2015) provide the reader with guidance on finite element modeling for 

buckling of the arch rib in the section on Stability.  This guidance is enhanced using the Linyi 

arch bridge as an example.  This bridge has a span of 289 feet and a rise of 57 feet.  The 

bridge has minimal upper lateral wind and stability bracing.   
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Finally only the sections on dynamic analysis, cable stayed and suspension bridges 

mention wind induced or earthquake vibration information and formulas.  No vibration 

information is presented in the sections on arches. 

4.3. BUCKLING ANALYSIS OF TIED ARCH BRIDGES 

The four bridges of this study are examined for elastic buckling.  Arch bridges are 

characterized by relatively high compressive normal forces in the arch rib thereby making 

buckling a mode of failure of interest to the design engineer.  Buckling of arch ribs may 

occur in-plane or out-of-plane of the arch.  Yet, tied arch bridges also have common and 

simple features that lower the risk of buckling.  Arch bridges typically are constructed with 

upper laterals or wind bracing between the arch ribs forcing the otherwise independent arches 

to act in tandem to resist or lower the risk of buckling failure.  Additionally, the hangers, 

under load, are expected to provide a restoring force to any disturbance.   Lastly, the vast 

majority of tied arch bridges designed and constructed since the 1950s have very stiff tied 

girders relative to the arch rib stiffness.  This feature places the majority of the live load 

demand in the tension tie girder rather than the arch rib.  Still, the buckling of tied arch 

bridges is investigated as part of this study to examine the relationship of instability to the 

stiffness relationship of the arch rib and tie.  At this time there is a trend in bridge 

engineering to reduce and even eliminate the overall bracing between the arch ribs for 

aesthetic and cost saving reasons.  Along with lighter or fewer bracing members, arch bridges 

are spanning longer distances.  This combination results in concerns over arch rib buckling 

since longer spans result in greater rise for the arch which translates to more dead load, 

greater length of arch rib, increased buckling length and finally less horizontal thrust.  Since 

the primary focus of this study is the dynamic performance of tied arch bridges the 
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eigenvalue solution can be used to solve the elastic buckling problem too.  Background for 

the analysis of tied arch buckling follows the references described hereinafter. 

4.3.1 Buckling and Vibration of Arches and Tied Arches.  Nair (1986) provides 

a practical method for establishing elastic buckling loads, natural frequencies and mode 

shapes for tied arches.  The method suggested is based on the flexibility method and can 

include arches having a circular or parabolic shape, members with variable cross sections and 

second order effects, if appropriate.  A number, n, unit displacement components, d, are 

applied to the tied arch planar model.  The value of n need not be a large number but should 

be at least one half the actual number of hangers.  The final eigenvalue equation is shown 

below: 

 Equation 4.5 

Where {d} is the displacement matrix 

H is the horizontal force component of the arch rib compression 

[F] is the flexibility matrix, determined by using a preliminary plane frame analysis program 

[G] is a geometrical term used to modify H for secondary forces in the rib. 

Equation 4.5 is solved for the horizontal thrust, H, and the corresponding buckling 

mode.  Thus the critical load for buckling should be the lowest value of H.  For a preliminary 

practical vibration analysis Nair (1986) provides a solution using a model where the lumped 

mass is applied where the displacements are sought, typically at every other hanger.  For 

vibration the final eigenvalue equation is: 

	    Equation 4.6 

Where {d} is the displacement matrix 

ω is the natural frequency 
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 [F] is the flexibility matrix, determined by using a preliminary plane frame analysis program 

[M] is the mass matrix  

Equation 4.6 is solved for the natural frequencies, ω, and the model shapes. 

The author provides the reader with six example applications that include a fixed arch 

and tied arch.  Different parameters are revised through six examples such as increase in 

number of displacement locations and increased in cross section area.  The results are shown 

for all cases and the model shapes plotted.  This information is useful as the planar arches are 

close, in dimensions, to real world applications.  Particularly the tied arch has a span of 910 

feet, a rise of 182 feet and 18 panels or 17 hangers.  The span to rise ratio is 1:5.  As a result 

this model is very close to the Jefferson Barracks Bridge of this study.   

4.3.2 Buckling Design of Steel Tied Arch Bridges.  Backer, Outtier, and Van 

Bogaert (2007) provide two practical methods for developing the out-of-plane critical 

buckling load for design of slender arch ribs in bridges.  Specifically examine the Albert 

Canal Bridge, a tied arch structure, in Belgium near Antwerp.  The bridge, a network tied 

arch, has a span of 377 feet and limited upper lateral bracing between the two arches.  The 

first method proposes revisions to the existing Eurocode equations for buckling while the 

second method involves a simple finite element model.  The authors assert there are no 

design aides for buckling analysis of arches as there are for straight steel members and so 

suggest revisions.  Generally both methods follow Eurocode 3 and both methods involve a 

simple beam finite element model (FEM) to determine the maximum axial force in the arch 

prior to buckling.  From the paper, the process for the Eurocode is as follows: 
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Determine the slenderness factor: 

̅ 	
∗

  Equation 4.7 

Where the critical normal force acting on the arch, Ncr, can be calculated from: 

	   Equation 4.8 

Determine the reduction factor, χ 

	 ; 	 1  Equation 4.9 

Where: 

0.5 1 ̅ 0.2 ̅  Equation 4.10 

And finally, the reduced buckling load is: 

, 	
∗

  Equation 4.11 

Where: 

α is a parameter, 0.34 for Buckling Curve “a” or 0.21 for Buckling Curve “b” in 

Eurocode 3. 

A is the cross section area of the arch rib 

fy is the yield strength of the steel 

β is the buckling length factor, Annex D of the Eurocode 

l is the bridge span 
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EIz is the out-of-plane bending stiffness of the arch 

γM1 is a safety factor from the Eurocode. 

To expand the above calculations to tied arches, Outtier, et al (2007) developed the 

following similar procedure presented as Method 1: 

By using a simple FEM, using only beam or frame elements, the critical normal load 

on the arch for Equation 4.7 is replaced by the linear elastic normal load on the arch rib 

before buckling denoted NFE,el.  Thus the new slenderness factor becomes: 

̅ 	
∗

,
  Equation 4.12 

Equations 4.9 and 4.10 remain the same though we instructed to use Buckling Curve 

“a” for which the authors have determined through many parametric permutations for several 

bridges have found to apply to tied arch bridges have spans from 164 feet (50 m) to 656 feet 

(200 m).  Finally, the maximum permissible axial load in the arch is calculated using 

Equation 4.11. 

The second method offered by Outtier et al (2007) modifies the buckling length 

factor, β, based on the thorough parametric analysis using a robust, high fidelity, FEM of the 

study bridges.  The results of the parametric analysis showed that for a short range of arch 

rise to span ratio, 0.16 to 0.19 the buckling length factors also fell within a tight range of 

values, 0.39 to 0.42.  The authors developed the following relationship for an alternate 

buckling length,  

	  Equation 4.13 

βA is taken as 0.255 
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βB is taken as 16.393 and  

βC is taken as 0.114 

The alternate buckling length factor is inserted into Equation 4.8 to determine the 

new slenderness factor ̅alt, using Equation 4.7 and follow through with Equations 4.9-11 to 

determine the maximum permissible normal load for the arch rib. 

Finally the authors compare results for the simplified method and a non-linear FEA 

for six different bridges and find the results to be within 10% with the non-linear 

methodology consistently producing lower values for the critical normal load.  The authors 

emphasize the application is limited to tied arches with short to medium spans (160 to 650 

feet) having no imperfections in the arch members. 

The methods noted above should provide a practical means to estimate the buckling 

load for the arches and a comparison for the work performed in this study using a 3D FEM of 

the tied arch bridges. 

4.4. TIED ARCH DESIGN 

It is proposed that very few references offer design related information with even 

fewer having design examples.  The literature review finds that Nettleton and Torkelson 

(1977), Beyer (1984), Hall and Lawin (1985), and Brockenbrough and Merritt (1994) provide 

varying depths of design information with examples.  The latest of these references is 

Brockenbrough and Merritt (1994) which provides the Glenfield Bridge as a backdrop for 

their design example.  The bridge, located at Neville Island, Pennsylvania, was originally 

designed using the 1965 AASHTO code and in the 1994 edition of the Structuarl Steel 

Designer’s Handbook, Brockenbrough and Merritt update the design using the 1991 

AASHTO 15th edition.  Originally the design used was Allowable Stress Design (ASD) while 
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Load Factor Design (LFD) was used for the recent example.  Breyer (1984) and Hall and 

Lawin (1985) both use Allowable Stress Design in their examples.  This writer is unaware of 

any design example using the latest 2012 AASHTO 6th Edition for Load Factor and 

Resistance Design.   

4.4.1 Design of Steel Tied Arch Bridges: An Alternative.  Hall and Lawin (1985) 

present the analysis, design, and construction of an alternate tied arch bridge.  The alternate 

comprises a steel arch rib with an integral, precast arch tie girder and bridge deck system.  

The design example is completed to the 1985 AASHTO 15th edition.  No further discussion 

will be presented in this section as the reference is discussed in Section 4.2. 

4.4.2 Arch Bridges.  Nettleton and Torkelson (1977) discuss both steel and 

concrete arch design in their enduring reference, Arch Bridges.  The steel and concrete design 

examples use the same bridge, an open spandrel, deck arch bridge having two hinges at the 

bridge supports.  Consequently the example bridge does not fit the profile of the bridges 

contained in this study.  However some of the elements and their design can provide insight 

into the overall design practice.  Moreover, the reference does provide material relevant to 

tied arch bridges that highlight the nuances with these types of bridges.   

4.4.3 Structural Steel Designers Handbook.  Another longstanding reference, 

The Structural Steel Designer’s Handbook, provides an informative example for the design of 

a tied arch bridge.  The example bridge has the requisite profile of the bridges in this study 

and through several editions, Brockenbrough and Merritt (1994) have updated the example to 

conform to both ASD and LFD.  Topics for design applicable to tied arch bridges are noted 

below with salient features noted. 
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4.4.3.1 Rise to span ratio.  A tight range from 1:5 to 1:6 with a preference for the 

flatter rise for aesthetic reasons.   

4.4.3.2 Panel length.   This feature is governed by the geometry and flexural stress 

in the arch members.  As the arch rib is typically constructed on chords, larger panel lengths 

lead to larger angle breaks from panel to panel that can be unsightly.  The longer panel 

lengths also place a greater flexural demand on the chorded arch rib member.  For these 

reasons panel lengths are general within 1/15th of the overall span. 

4.4.3.3 Depth to span ratio.   Arch rib depths for tied arches depth to span ratios 

range from 1:140 to 1:190. 

4.4.3.4 Arch rib cross section.  Box girders are typically used for arch ribs though 

for short spans, less than 200 feet, single web member can be considered. 

4.4.3.5 Dead load distribution.   For dead load distribution it is typical to use an 

arch axis conforming to the dead load thrust line.  This combined with cambering the arch rib 

for dead load will eliminate flexural in the rib and tie.  As a result, the rib and tie will 

experience pure compression and tension respectively.   

4.4.3.6 Live load distribution.  Uniform live load specified by codes and applied 

to the entire roadway generally creates relatively small flexural demand in the arch rib and 

tie.  Partial (patch loading) uniform live loading tend to create much larger flexure demands 

in the rib and tie.  For those bridges with very stiff arch tie girder compared to the arch rib 

stiffness, the live load demands will be much larger in the tie girder. 

4.4.3.7 Wind loading.  The effects of wind loading on bridges are a function of the 

arch spacing to overall span length.  For relatively narrow spacing, more common in an era 
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where fewer traffic lanes were required, the wind loading may control sections in many parts 

of a structure.  However for wider structures, constructed to meet contemporary traffic 

demands, wind loading effects are not as severe.  This is likely to be the case for arch spacing 

to span ratios less than 1:20.   

4.4.3.8 Thermal loading.  Thermal loading should be considered for arches, 

especially non-uniform thermal distribution due to the relative spatial difference between 

arch and tie. 

4.4.3.9 Deflections.  Deflections should conform to the applicable codes.  As 

discussed earlier, for greater economy, the arch rib should be cambered for dead load.  The 

results of secondary stresses due to live load deflections should be considered on a case by 

cases basis and will depend greatly on the overall rigidity of the bridge. 

4.4.3.10 Dead load to total load ratio.  The authors find that for many arches the 

dead load to total load falls within a range of 0.74 to 0.88, with a mode of 0.85.  The weight 

of the arch ribs and tie girder to total load ranged from 0.20 to 0.30.  The use of higher 

strength steels may nudge this ratio down to 0.18 or 0.19.   

4.5. CONSTRUCTION OF TIED ARCH BRIDGES 

Construction methods for arch bridges are briefly discussed in the following 

references: Nettleton and Torkelson (1977), Beyer (1984), Hall and Lawin (1985), Xanthakos 

(1994), Brockenbrough and Merritt (1994) and Fu and Wang (2015).  Generally, construction 

methods are limited only by the constructor’s imagination and engineering.  In the past, these 

methods have been proprietary means and methods to the contractor.  Design engineers are 

discouraged from developing a structure erected by limited means as it often means higher 

construction cost.  Today there are new methods of procurement which combine contractors 
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and engineers in contrast to separating them as done in the past.  As a result there are new 

erection means and methods available to the industry.  These methods are covered in the 

section on Tied Arch Construction. 

4.6. STRUCTURAL HEALTH MONITORING 

Structural health monitoring (SHM) encompasses a broad range of monitoring 

methods from technical based data gathering to comprehensive systems that capture bridge 

performance as well as the environmental data for the site.  A survey of DOT information 

available on the internet show that comprehensive systems are rare and most instances of 

SHM are applications focusing on on-going performance matter such as fatigue and fracture 

crack assessment or performance of repair methods in response to the demands on a bridge 

but specifically the element repaired.  Focused SHM is not new and has been going on for 

decades in university laboratories the world over.  Despite the lack of real world applications, 

there is a wealth of information that documents structural or bridge performance variables, 

monitoring systems, data collection and processing. There are many reasons cited for the 

slow implementation of the available technology.  The reasons range from concensus on what 

data to collected, when to collected it, how to transmit it, how to store it and once in the 

owners hands, what to do with the data.  And funding isn’t noted explicitly it certainly is 

implicit in many of the reasons especially collecting and processing.  Addressing those 

challenges is beyond the scope of this document.  Rather this review is developed to 

summarize the information and to identify how the results of this study may fit into a SHM 

for owners with tied arch bridges in their inventory. 

Reid (2012) documents the application of two state-of-the-art SHM programs by the 

Univeristy of Michigan (UM) and North Carolina State University (NCSU) to capture the 

performance of three bridges.  The UM program will involve the application of a “…sensing 
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skin, a thin film, surrounded by electrodes…” to detect cracks and monitor for corrosion on 

steel girders.  This application will be applied to a 40 year old concrete slab on steel girder 

structure.  The film is comprised of carbon nanotubes and polymer and is about 16 square 

inches.  One surprising advantage of this technology is the sensor is able to capture data from 

a broader area and in two-dimensions in constrast to the strain gauges predominantly in use 

today.  The data generated will be transmitted wirelessly to a sun powered server at the site.  

The remaining two structures, a single span welded plate girder bridge in Maryland and a 

swing span bridge located in the Outer Banks area of North Carolina.  The SHM system for 

these two bridges will use piezoelectric paint sensors with acoustic emissions sensors.  This 

technology is also a thin film somewhat similar to the nanotube and polymer application by 

UM.  For all three bridges there will be 4-6 locations where the sensors will be applied.   The 

author notes this technology due to the advancement of technology and because piezoelectric 

sensors can also be used to detect accelerations and vibrations.  Lastly it is noted that while 

data collected will be able to detect the formations of cracks 1mm in length (though other 

sources are working on materials will the capability to detect cracks of 1μm in length or 

width) it will still be necessary to visually inspect the structures upon detection. 

Brownjohn (2006) presents a comprehensive overview of SHM of civil infrastructure 

including but not limited to bridges.  Among the topics are present state-of-the-art, future 

developments, data mining and diagnosis of infrastructure health.  Brownjohn list ten 

objectives of SHM which include: 

 Monitoring effects by external loading, 

 Assessment of long term movement or degradation 

 Fatigue assessment, and  

 Post earthquake assessment of structural integrity 
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He reminds us that the primary motivation of SHM is to produce consistent and reliable 

means of acquiring, managing, integrating, intreperting structural performance by removing 

or supplementing the qualitative, subjective and unrealiable human element.  Moreover that 

any SHM system should be continuous “not only measuring vibrations but also quasi-static 

changes” in the structure which are compared to baseline characterization of structural 

performance, identifying those occasions where the actual performance contrast with the 

baseline predictions.  An overview of the system, he notes, is to: 

 Determine the parameters sought for collection and study 

 Implement the System 

 Detection and Data Collection 

 Process and interpret the Data 

 Intervention Analysis 

Where the last item, intervention analysis, describes a phase of SHM where an anomaly 

exists between the recorded performance and baseline data.  And additional work needs to be 

done to ascertain the anomaly is a performance event and steps need to be taken to improve 

the structure performance.  

 Brownjohn (2006) also acknowledges the lack of applications for SHM to bring real-

time data from the field into the owner’s realm.  That vibration-based damage detection 

(VBDD) has only limited successes with real operational infrastructure.  For successes he 

points to dams as a proto-typical civil infrastructure where mandates (in the United Kingdom 

following the Reservoir Reform Act of 1975) following tragic incidents call for 

instrumentation for structural parameters such as displacements, strains, pressure, and 
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seepage.  Environmental or meterological data is also collected and matched via timing to the 

aforementioned recordings.  

 Brownjohn notes the focus is currently shifting from dams to bridges.  And as part of 

that transtion notes that the dynamic response monitoring is important to understanding the 

effect of earthquake motions on structures and estimates of dynamic characteristics using 

ambient (or forced vibrations) to track structural characteristics as indicator of structural 

health.  Brownjohn points to the Golden Gate and Bay Bridges as two of the earliest attempts 

of structural characterization.  The goal for those bridges was to understand the dynamic 

behavior (periods) of several components as the bridges were under construction in order to 

under their response to earthquakes.  Maintaining a focus on dynamic behavior the focus 

shifted in the 1940s to aerodynamic behavior due to the Tacoma Narrows disaster.  He argues 

that while major bridges garner attention and funding for instrumentation only small portions 

of the bridge are studied and that overall behavior as determined through a much denser, 

nearly cost prohibitive, array of sensors is necessary to have a true assessment.  As a result 

Brownjohn belives it may be more advantageous to advance SHM systems on smaller 

bridges. 

 The paper presents case studies such as the Humber Suspension Bridge, built in the 

1980s and having a main span of 4,625 feet.  This bridge was first instrumented to determine 

the effects of spatial variations for earthquake ground motions between the towers.  It 

reportedly has about 20 miles of instrumentation cable installed.  The successful 

instrumentation of this bridge has been used to validate FEA work on other bridges such as 

the Bosporus Bridge and the yet to be constructed Bridge over the Straits of Messina.  From 

the results, Brownjohn notes, that observation of global response such as deck accelerations 

is unlikely to indicate structural damage or deterioration to the major components of the deck 
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but would aid with predictions for hangers and bearings.  It’s further observed that bridge 

deck vertical vibration modes are sensitive to the bearing behavior and condition such that 

overall fundamental vertical deck modes would be helpful in assessing bearing conditions.  

Another case study highlights the effects of bearing conditions on a routine bridge and the 

growing trend toward tangible proof of rehabilitation work.  The bridge has a span of 59 feet 

comprised of adjacent, inverted t-beams that are tensioned transversely and CIP deck placed 

within and atop the beams.  The superstructure is supported on pinned bearings.  The focus of 

the rehabilitation was to fix the bearings and the improvements to structural performance 

were ascertained using frequency response functions (FRF).  To complete this analysis, the 

response of the original and retrofitted bridge was monitored for a period of time.  This 

allowed the engineers to capture a statistical relevant data set.  The output, mode shapes and 

frequency plots, were used to update or refine the FEA models for the analysis.  However, 

the frequency plots themselves showed increases in all of the lowest frequencies measured 

after the retrofit due to the increase in stiffness from fixing the bearings.  Certainly there are 

other methods that may be used (load displacement relationships developed from specific 

vehicle weights, position and measuring the resultant displacements) the case study uses 

methods that are consistent with SHM and the possibility of working remote from the bridge 

site. 

 As a premise of this study is based on dynamic characteristics of tied arch bridges as 

predictors to the performance of the same, it’s worth noting some of the challenges that 

Brownjohn believes face the civil industry for SHM.  These include: system reliability, 

inappropriate instrumentation and sensor overload, data storage and data overload, 

communcations, environmental factors and noise, data mining and presentation, funding and 

vested interests and finally lack of collaboration.  Brownjohn concludes with comments on 
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the state-of-the-art and directions.  In summary he notes that there is a concensus from a vast 

network of stakeholders that SHM needs to be implemented in the design phase identifying 

then the substructures of interest to the owner/analyst.   

 A State of the Practice of Modern Structural Health Monitoring for Bridges: A 

Comprehensive Review, Ahlborn et al (2010) covers in-situ sensors/networks, on-site 

techniques and remote sensor technologies with case studies for several bridges.  This 

summary will cover those techniques that should be relevant to long span bridges and for 

which vibration or modal response are applicable or used in case studies. 

 According to Ahlborn et al (2010) as of 2005, about 40 bridges, having spans longer 

than 300 feet, have been instrumented.  Such instrumentation is far from routine and 

according to the report includes “spatially distributed wirelessly powered, wirelessly 

networked, embedded sensing devices supporting frequent on-demand acquisition of real 

time information about loading and environmental effects, structural characteristics and 

responses.”  He goes on to note that modern global health monitoring relies on finding shifts 

in resonant frequencies or changes in structural mode shapes.   There are difficulties he 

explains in differentiating real structural damage from environmental factors such as 

moisture and temperature.  In their assessment on accelerometers and velociometers it is 

further explained that each instrument is specific with regard to signal noise and significantly 

poor performance at vibration frequencies lower than 0.2Hz which discount applicability to 

long span bridges.  And for that reason accelerometers are used for high frequency 

applications which includes forced vibration testing however ambient vibration is also 

present at these frequency ranges making signal processing a challenge.  Moreover, it is 

typically not feasible to eliminate traffic as a source of ambient vibration from major 

structures.  Piezoelectric sensors used in Electromechanical Impedence (EMI) applications 
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measure electrical impedence in the circuit which is directly related to the mechanical 

impedence of the bridge thereby providing a measure of fundamental bridge characteristic 

such as mass, stiffness and damping.  Those quantities also form the basis of any dynamic 

system analysis and changes in those quantities may define structural damage.  Other 

possible dynamic sensing schematics include Global Positioning Systems (GPS) coupled 

with triaxial accelerometers.  This combination measures bridge deflection and with the GPS 

driving the accelerometer by time pulses the deflections and accelerometer are synchronized.  

Another method, not directly applicable to dynamics but able to detect structural damage in 

cables is the Magnetic Flux Leakage (MFL) test.  These applications involve both expensive 

equipment and are labor intensive with rates up to a single cable per day.   

 The Ahlborn et al (2010) paper concludes with examples of bridges having SHM 

systems.  Of four cases, three are of interest to this scope of work.  The authors discuss the 

SHM used on the Golden Gate Bridge.  There are 64 accelerometers having accuracy to 

measure ambient vibration to 30 μG and a programmed sampling rate of 1 kHz for a time 

window of 10 μs.  Likewise the Tsing Ma suspension bridge in China is outfitted with 774 

instrumented nodes comprised of accelerometers, strain gauges, displacement transducers, 

level sensors, GPS sensors, anemometers, and weigh-in-motiono sensors all connected to a 

data acquisition system.  The last example is a routine bridge but the data processing 

component of this project demonstrates the eventual downstream application of structural 

health monitoring.  The Vernon Avenue Bridge in Massachusetts is comprised of three 

continuous 150 feet plate girder spans and is instrumented with 100 strain gauges, 36 girder 

thermistors, 30 concrete thermistors, 4 biaxial tiltmeters and 16 biaxial accelerometers.  Two 

models are developed using SAP2000, one for the as-designed state and the other for the as-

performing state using the monitored data in an attempt to best reflect the actual 
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performance.  The design model uses non-factored loads to develop the baseline model.  The 

two models can them be compared to see how well the predictions pan out.  No data or 

comparisons were presented in the Ahlborn paper. 

 In their paper, Modal Analysis For Damage Detection in Structures, Hearn and Testa 

(1991) present a method for non-destructive testing for damage in structures based on 

fundamental properties of structural elements.  Hearn and Testa, like others, postulate that 

fundamental characteristics such as mode shapes and natural frequencies are functions of 

mass, stiffness and damping.  Thus damage in structures may manifest as change in the mode 

shape, natural frequency, or damping.  They propose the perturbation method combined with 

a dynamic inspection method using a calibrated hammer to induce a dynamic load and 

multiple receivers to record the vibration response of the structure.  The perturbation equation 

is: 

∆ ∆ ∆ ∆ 0  Equation 4.14 

Where: 

K = is the global stiffnes matrix 

M = is the global mass matrix 

ω = is the natural frequency 

φ = is the normalized mode shape 

Wherein civil structures may not lose appreciable mass in a crack event, the term ΔM may be 

neglected as well as second order terms resulting in: 

∆
∆

   Equation 4.15 
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For a single vibration mode, i.   

As the global stiffness matrix, K is comprised of the stiffness of the individual elements, the 

global stiffnes matrix may be expressed as: 

∑    Equation 4.16 

Where N denotes the individual member 

εN = is the member deformation  

kN = is the member stiffness 

A similar equation can be developed for the change in stiffness, ΔK, 

∆ ∑ ∆    Equation 4.17 

Substituting equation 4.17 into equation 4.15 yields a chage in natural frequency for a change 

in the individual member stiffness due to damage. 

∆
∆

   Equation 4.18 

Hearn and Testa (1991) note that the change in frequency are influenced by the severity of 

the damage and member affected.  Moreover, explaining that the location and severity of the 

deterioration event may affect some modes strongly and others weakly. 

By describing damage to a member in terms of it’s stiffness we introduce a fractional 

multiplier, αN, and write: 

∆   Equation 4.19 
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Equation 4.19 can be substituted into Equation 4.18 to provide a change in natural frequency 

that is a function of damage severity (αN) and location, N.   

∆    Equation 4.20 

However, by considering the ratio of change in natural frequencies, the dependence is only 

on the location, N.  This follows from: 

∆

∆

∆

∆
  Equation 4.21 

The authors present a case study of a frame of welded, with known poor fatitue 

characteristics, members subject to time varying load.  They compare the predicted 

frequencies to observed frequencies and upon using an objective methodology can identify 

the damaged member using the ratios of the observed natural frequencies. 

 The authors present one final case study that is of interest to this study, modal 

analysis damage detection of wire rope.  Bridge rope or wire strand is used exclusively in tied 

arch applications and from our assessment of the bridges in this study are typically subjected 

to dead load magnitudes of 45 kips to 99 kips and live load magnitudes 11 to 23 kips.  Hearn 

and Testa note that the natural frequency of the loaded wire rope is not a function of the 

stiffness as is the case with frame members.  As a result, the aforementioned reduced member 

stiffness cannot be used to determine change in the natural frequency.   The natural frequency 

for a tensioned wire rope is: 

 Equation 4.22 
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Since damping is also a characteristic trait of a dynamic system and since intact, continuous 

and solid systems generally have poor attenuation, damage in structural members may 

manifest in higher damping values (as dynamic response is attenuated).  The authors studied 

several cases for wire rope having different tension values and variable reduction in cross 

sectional area (damage) and reported on the value of observed damping with damage to 

original damping, (η/ηo).  The results show distinct changes to identify the damaged rope. 

 The final paper selected for this section is particularly relevant in a number of ways.  

Ren, Zhao, and Harik’s 2004 paper on Experimental and Analytical Modal Analysis of Steel 

Arch Bridge focuses on the US 24 Bridge over the Tennessee River in Kentucky which is 

also included in this study.  The paper also demonstrates that real world application of 

experimental modal analysis to extract characteristic parameters (frequencies, damping ratios 

and mode shapes) can be accomplished outside the quiet laboratory environment.  This is 

especially important for civil infrastructure as many civil structures cannot be shut down to 

set up an elaborate or dense receiver network in which to capture responses to dynamic 

testings. 

 Ren et al (2004) acknowledge the difficulty in recording dynamic output in a noisy 

environment and propose to use the ambient noise (traffic, wind, etc) as source of input.  

However, that input is not known and the experimental modal analysis becomes an exercise 

in output only modal identification.  The authors use both peak picking method in the 

frequency domain and the stochastic subspace identification method in the time domain to 

accomplish their goal.  Though these methods are outside the scope of this study, the results 

presented provide invaluable insight and a means of corroborating the results of this study for 

the US 24 Tied Arch Bridge.  The results presented by Ren et al (2004) include arch 

displacements, natural frequencies and mode shapes.   
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4.7. PROPRIETARY INFORMATION 

The majority of the information sought and used for this study is available in the 

public domain.  However, some reference material (calculations and plans) are owned by 

Jacobs Engineering Group through acquisition of Sverdrup Civil which developed final 

plans, specifications and estimates for the US 24 bridge over the Tennessee River, Rte 61 

over the Mississippi River and Rte 364 (Page Avenue) over the Missouri River.  Calculations 

and plans for the Page Avenue Bridge were available for review; for the other structures only 

plans were available.  It should be noted that the plans for these bridges are also available 

through the respective Departments of Transportation via the Freedom of Information Act. 
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5. BRIDGE DESIGN REQUIREMENTS 

5.1. BACKGROUND 

The analysis and design of Tied Arch bridges presented herein using the current 2012 

AASHTO LRFD Bridge Design Specifications (AASHTO).  AASHTO is developed with 

input and concurrence from all Departments of Transportations.  Previously the analysis and 

design of Tied Arch bridges developed by Brockenbrough and Merritt and Nettleton and 

Torkelson (Brockenbrough et al, 1994 and Nettleton et al, 1977) demonstrate design of 

limited members using Load Factor Design (LFD) and Allowable Stress Design (ASD).    

This project presents the analysis and design of Tied Arches using the 2012 American 

Association of State Highway and Transportation Officials (AASHTO) Load and Resistance 

Factor Design (LRFD).  This methodology places a focus on meeting strength, service, 

fatigue, and extreme event limit states to provide a structure for a specified lifetime, usually 

100 years for major bridges.  The crux of this design methodology is the following 

inequality. 

∑     Equation 5.1 

This inequality requires the summation of all factored force effects, Qi, to be less than the 

factored resistance, Rr, for all components and connections.  The load modifier, ηi, accounts 

for ductility, redundancy and operational classification.  The ductility load modifier, ηD, for 

strength limit states, is assigned 1.05, 1.0 or 0.95, contingent on the detail under investigation 

having little inherent ductility, complies with the requirements in the AASHTO 

specifications, or is over and above the ductile requirements in the specifications.  For the 

extreme event limit state, ηD, is assigned a value of 1.0.  AASHTO encourages redundant 

structures, i.e., having multiple load paths and continuity, but provides for a redundancy 
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modifier, ηR.  The values of ηR for the strength limit states is 1.05 for non-redundant 

members, 1.0 for members meeting the redundancy requirements of AASHTO, and 0.95 for 

exceptional levels of redundancy, for example multiple girder lines in the superstructure or 

multiple column bents for the substructure.  For all other limits states, the redundancy 

modifier is taken to be 1.0.  Finally AASHTO defines the operational importance modifier, 

ηI, to be applied to only the strength and extreme event limit states.  For the strength limits 

states the importance modifier should be taken as 1.05 for important or essential bridges, 1.0 

for typical bridges and 0.95 for less important bridges.  The product of the aforementioned 

modifiers should equal or exceed 0.95 where the maximum values of the load factor, γi, are 

warranted.  Where the minimum values of the load factor, γi, are desired the inverse of the 

product of the modifiers should not exceed 1.0.    

The loads and load factors, limited to this project, are defined in the following 

sections.  Load factors depend on the load effect, thereby accounting for the variability in 

some loads being well quantified while others are not.  For this project the loads effects are 

both permanent and transient, they include loads such as: dead, live, impact, wind, 

temperature, braking, and earthquake.  See Figure 5.1.  Due to the limited nature of the scope 

of this study, both temperature and braking effects will be omitted. 

5.2. LOAD EFFECTS AND FACTORS 

Figure 5.1 shows the AASHTO loads specific to this project and from that figure we 

see that dead loads and transient loads are delineated into composite and non-composite 

loads.  Composite loads are applied to a structure or structural member in which at least two 

dissimilar materials are bonded and or physically connected to form a single member having 

more robust section properties.  Non-composite loads are characterized as loads, such as self-

weight, that are applied prior to any two dissimilar materials forming a single member.   
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Figure 5.1.  AASHTO Bridge Loads 

 
The specific loads effects and factors are discussed in the sections below.  

5.2.1 Dead Load (DC).  The DC load is comprised of non-composite dead load 

which includes the self-weight of any and all structural members and any non-structural 

attachments that may be included in the bridge.  There are two further delineations for this 

load:  structural steel and reinforced concrete.  The structural steel includes the following: 

arch rib, tension tie girder, floorbeams, roadway stringers and diaphragms.  Also included are 

all connection steel as well as internal and external stiffeners and bearings.  All structural 

steel has a density of 0.490 kcf.  The reinforced concrete dead load is the wet weight of the 

concrete and reinforcing steel bridge deck.  The density of the concrete is dependent on the 

28-day strength, f’c and use of normal weight or lightweight concrete.  For this project, a 

normal weight concrete deck with an industry standard of f’c = 4,000 psi is used.  Thus the 

density of the reinforced concrete is 0.150 kcf per AASHTO Table 3.5.1-1 and commentary.  

Non-structural components may be inspection walkways and grab bars which are common 

Bridge Loads
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appurtenances on major bridges.  These walkways are typically steel but other materials are 

sometimes used when reduced weight or greater corrosion-resistance is desired.   The load 

factor, γp, for DC loads for strength limit states I-V is 1.25 for maximum effects (or 0.90 for 

minimum effects) and for service limit states I-IV is 1.00.  For the earthquake extreme event 

limit state, the load factor, γp, is 1.25.    

5.2.2 Dead Load (DW).  This category is comprised of composite dead loads, or 

loads applied after the concrete bridge deck, which is now bonded to the steel stringers and 

bonded around shear connections attached to the steel stringers.  This dead load includes the 

wearing surface applied to the hardened concrete deck, the concrete safety barrier curbs or 

railings1, roadway light posts, and utilities.  Provisions are usually made to provide utility 

supports before the concrete deck is placed but the actual utility (water, gas, electric, fiber-

optics, etc) are placed after the bridge is complete.  Wearing surfaces vary from dense 

asphaltic concrete to special concrete mixes such as low slump, latex modified, and silica 

fume.  These wearing surfaces are placed after the concrete deck has hardened and prior to 

allowing traffic on the bridge but more often these wearing surfaces are placed well after the 

bridge has opened to traffic.  In the latter case, the design incorporates a future wearing 

surface.  These wearing surface applications commonly result in an applied pressure of 0.035 

ksf.  The load factor, γp, for DW loads for strength limit states I-V is 1.50 for maximum 

effects (or 0.65 for minimum effects) and for service limit states I-IV is 1.00.  For the 

earthquake extreme event limit state, the load factor, γp, is 1.50.    

5.2.3 Live Load (LL).  The LFRD live load model is markedly different than the 

model of the older, ASD and LFD AASHTO codes.  Similarly the application of the live load 

                                                      
1 Not all safety barrier curbs or railings are composed of concrete, metal railings in the shape of 
jersey barriers are available and a barrier/railing may be composed of both concrete and metal.  
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model has also changed as is evidenced by Strength Limit Case IV.  Strength Limit Case is 

specifically for long span bridges where a high dead load to live load ratio is likely.  The core 

of the live load model is the HL-93 model.  HL-93 is a combination of truck and lane load.  

Wherein the past, the truck loading was applied separately from the lane load, the two loads 

are now applied concurrently.  And the additional concentrated loads associated with the 

older lane load are no longer used.  For completeness there is also a tandem axle, with axle 

spacing of 4 feet, and each axle having a magnitude of concentrated force of 25 kips.  The 

tandem axle is not shown here.  The truck loading is the same as the older HS-20-44, this 

arrangement is shown in Figure 5.2.   

5.2.4 Dynamic Impact Allowance (IM).  AASHTO provides for a static 

equivalent for a vehicle dynamic loading effect.  This loading applies only to the vehicle, 

design truck or design tandem, and not the lane load.  The value of the IM allowance is 

provided per AASHTO Table 3.6.2.1.1. and is 33% or expressed as a factor, 1.33, for 

strength and service limit states.  In the past this value was computed from: 

	 	 0.33  Equation 5.2 

Where for the equation above the variable L is the span length in feet.  The value of I is 

expressed a percentage.  The factor, I, had an upper limit of 0.33 with no lower limit.  

Assessing Equation 5.2 we see that for short spans, the value for impact will be 0.33 while 

for longer spans, such under consideration in this study, the value is small.  This correlates 

well with the impact of single vehicles on long span bridges having no significant effect.  
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Figure 5.2.  HL-93 Live Load Model 

 

5.2.5 Wind Load on Structure (WS).  AASHTO 3.8 covers the wind on structure 

loading and provides for calculation of the wind velocity and pressures for design wind, VDZ 

and PB.   A subsection, 3.8.1.2 allows for wind tunnel testing should wind become a major 

force and/or a more precise estimation of wind loading necessary.  Lastly AASHTO Section 

3.8.3 provides guidance, albeit sparse, on aeroelastic instability and phenomena. 

The base wind speed may be taken as 100 mph, in lieu of more exacting 

meteorological work.  For simplicity, AASHTO permits the basic wind velocity, VB, to be 

taken as V30, which is the velocity of wind at a height 30 feet from low ground or water 

14’-0” 14’-0” – 30’-0” 
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surface.  The following equation is used to determine the value of the wind speed at a height 

of interest for the bridge. 

2.5 ln  Equation 5.3 

V0 and Z0 are meteorological terms for wind friction velocity and friction length of 

upstream fetch respectively.  These terms are provided in AASHTO Table 3.8.1.1-1 and are 

dependent on local area characteristics.  They vary by rural to city applications from 8.20 to 

12.00 for V0 and 0.23 to 8.20 for Z0.  By taking an example of a rural bridge site and the 

distance, z, from the water, which is about 60 feet to allow for navigation, to the mid-height 

of our bridges (approx. 0.5 times 120 feet = 60 feet), VDZ is 128 mph.  The design pressure, 

PB is: 

	  Equation 5.4 

So for our example, the windward design applied pressure at mid height of our bridge 

is calculated to be 0.082 ksf, with a base pressure, PB, of 0.05 ksf.  Whereas the leeward 

design applied pressure is 0.041 ksf.  The pressure is applied to all exposed components of 

the bridge.  The two loadings are applied simultaneously; however the total wind loading 

effect need not exceed 0.30 klf, windward, or 0.15 klf, leeward. 

5.2.6 Earthquake Load (EQ).  2012 AASHTO philosophy for bridge structures, 

Section 3.10, stipulates the structure be “design to a low probability of collapse but may 

suffer significant damage and disruption to service when subject to earthquake ground 

motions that have a 7 percent probability of exceedance in 75 years”.  Such earthquake 

ground motions are noted as having a 1,000 year return period.  The section further notes that 

higher levels of performance may be required by the owner.  For major bridges such as those 



www.manaraa.com

76 
 

in this study, the current requirement is often to design a structure to remain elastic (no 

apparent damage) for the 1,000 year return period but permit limited inelastic behavior 

(damage) for the earthquake having 2 percent probability of exceedance in 50 years or a 

2.500 year return period.  To develop the earthquake ground motions for these seismic risk 

events, a site specific study is typically performed as allowed in AASHTO 3.10.2 and 

3.10.2.2. 

5.3. LOAD COMBINATIONS 

For the design example presented in this work, the following AASHTO load cases 

will be used. 

5.3.1 Strength I.  The Strength I load case addresses the primary vertical loads 

affecting the bridge, dead and live load. 

1.16[1.25DC + 1.5DW + 1.75(LL+IM)] Equation 5.5 

5.3.2 Strength III.  The Strength III load case includes wind loading in 

combination with the dead load.  Live load is omitted from this load case. 

1.16[1.25DC + 1.5DW + 1.4WS] Equation 5.6 

5.3.3 Extreme Event I.  The Extreme Event I load case includes the earthquake 

effects with all dead load.  Live load is considered on a case by case basis for major bridges 

but is not typically included for routine bridges.   

1.16[1.25DC + 1.5DW + 1.0EQ] Equation 5.7 
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5.3.4 Service I.  Service I load case is typically used to investigate stresses, 

deformations and cracking under regular operating conditions.  This load case includes all 

dead loads, live load and 30% of the wind loading. 

1.16[1.0DC + 1.0DW + 1.3(LL+IM) + 0.3WS] Equation 5.8 

5.3.5 Service II.  The Service II load case is similar in nature to Service I for 

purpose, however it omits live load and increases the wind loading from 30% to 70%. 

1.16[1.0DC + 1.0DW + + 0.7WS] Equation 5.9 

5.4. LOAD ANALYSIS RESULTS 

For the City Island Bridge, the resulting structural reactions are listed in Tables 5.1 

and the section properties for the arch rib and tie girder in Table 5.2.    

 
Table 5.1.  City Island Bridge LRFD Member Reactions 

City Island Bridge Bridge Element 

Load Case Units Arch Rib Arch Tie Hanger 

Axial     

DC Kip -3797 3680 312 

DW Kip -305 295 29 

LL+I Kip -802 868 89 

M22     

DC ft-kip 0 0  

DW ft-kip 0 0  

LL+I ft-kip 0 0  

Wind ft-kip 49 60  
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Table 5.1.  City Island Bridge LRFD Member Reactions (cont.) 
M33     

DC ft-kip 1023 1500  

DW ft-kip 100 235  

LL+I ft-kip 2524 11860  

Wind ft-kip 0 0  

 

 
Table 5.2.  City Island Arch Rib and Tie Girder Section Properties 

Section 

Property 

Bridge Member 

Arch Rib Arch Tie Girder 

Ag, in
2 319.7 328.3 

Ixx, in
4 154,774 711,867 

Iyy, in
4 82,321 77,801 

Sxx, in
3 5,530 11,716 

Syy, in
3 3,802 4,216 

 

To determine a preliminary size for the arch and tie members, subject to either 

tension or compression and bi-axial flexure we will use the AASHTO LRFD interaction 

equation: 

	
	

0.2;		
.

1.0 Equation 5.10 

	
	

0.2;		
.

.
1.0 Equation 5.11 
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Where: 

Pr = factored tensile or compressive resistance, kips 

Mrx = factored flexural resistance about the x-axis, kip-inch. 

Mry = factored flexural resistance about the y-axis, kip-inch 

Mux, Muy = moments about the x- and y-axes, respectively, resulting from factored 

loads. 

Pu = axial force effect resulting from factored loads, kip. 

φf = resistance factor for flexure 

Based on the results from Table 5.1, Pu is 7,808 kips.  For the purpose of preliminary 

calculations, Pr is determined using the gross area.   

  Equation 5.12 

Where φ = 1.0 and using the information from Table 5.2 and Fy = 50 ksi, so that Pr = 

16,416 kips.  This results in a demand to capacity ratio of 0.48 so that Equation 5.11 is used 

for the interaction equation.  By inspection, the Strength I load case will control over 

Strength III which has wind load effects but no live load.  The resulting interaction result is: 

,

,

, "/

,
.

0.89 1.0 Equation 5.13 

 

Thus the existing tie girder arrangement for the City Island Bridge is acceptable for 

the LRFD code for strength. 
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Similarly the arch rib is checked for the LRFD demand and the capacity based on 

Eqautoin 5.11 as the demand capacity ratio is 0.52. 

,

. .

. "/

.

0.78 1.0 Equation 5.14 

 

The hanger is sized using service loads since the capacity of bridge rope or strand is 

reported in minimum breaking load.  For ASTM A586 Grade 1, the minimum breaking 

strength for 2 inch diameter strand is 245 tons or 490 kip.  Four strands are used such that the 

allowable load per strand is 122.5 kip or 123 kip.  Using Table 5.1 and Equation 5.7 the 

demand is: 

.
114  Equation 5.15 

And the demand to capacity ratio is: 

0.93 Equation 5.16 
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6. FINITE ELEMENT MODEL DESCRIPTION 

6.1. GENERAL  

Three dimensional analytical models of the tied arch bridges for this study were 

developed to determine the static and dynamic characteristics of these bridge types.  The 

models were constructed using SAP2000, V18.1.0, a computer finite element analysis 

program developed by Computers and Structures Inc (CSi) of Walnut Creek, California.  The 

analysis is based on non-linear elastic behavior anticipated due to the small deformations and 

absence of geometric or material non-linear behavior.  To represent the cables the model uses 

tension only frame members thus the reason for a non-linear model.  Model development, 

limitations, calibration and results are presented in more detail in the following sections.   

The models developed are based on available design plans and may not reflect the 

final constructed structure.  The models do not include access facilities that are often placed 

on major river bridges.  Access or inspection facilities typically have negligible mass 

compared to the structure as a whole and are planned and connected to the main structure in 

such a way to minimize influence on the structural bridge behavior.  As a result, these 

ancillary structures do not add appreciably to the overall stiffness properties of the bridge.   

The original analysis of the bridges were likely completed using 2-D methods 

commonly in use during the early 1970s and into the 1980s before personal computers and 

widely affordable structural analysis programs were available.  The Page Avenue tied arch 

bridge analysis was completed in 2-D using STAAD software (Research Engineers 

International) and designed using spreadsheet programs.  Table 6.1 shows the bridge, design 

firm, year of design and bridge owner.   
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Table 6.1.  General Bridge Information 

Bridge Design Firm Design Year Bridge Owner 

Jefferson 

Barracks 

Alfred Benesch & Company Circa 1976 Illinois DOT 

City Island Jacobs Engineering Group Circa 1981 Iowa DOT 

Page Avenue Jacobs Engineering Group Circa 1998 Missouri DOT 

Tennessee River Jacobs Engineering Group Circa 1971 Kentucky Transp. 

Cabinet 

 

6.2. BRIDGE MODELS  

The bridges are comprised of the structural steel, concrete deck, bearings, and 

substructure.  The finite element models capture these bridge members using different 

elements.  Two node, frame, elements having three translational degrees of freedom (DOF) 

and three rotational DOF, are used for the majority of the structural steel.  See Figure 6.1.  

The structural steel elements of the arch and arch roadway are all modeled using frame 

elements.  The concrete deck is modeled using shell elements, having a four node 

formulation, where each node has 6 DOF.  Figure 6.2 depicts the shell element axis 

orientations and element faces.  Each of the joints, j1-j4, have the same DOF as one of the 

nodes of the frame element shown in Figure 6.1.  The FEA models do not include a high 

level of detail in an attempt to produce satisfactory results by modeling members as single 

elements located on the centroid of the members.  It is anticipated that more refined analysis 

will be used to capture the static and dynamic performance of bridge members should they 

warrant more in-depth investigation for fatigue and fracture.  For those investigations each 

member or substructures of the overall model may be modelled in greater detail using 3D 



www.manaraa.com

83 
 

brick and plate elements with finer meshes as appropriate.  The arch hangers, bearings and 

piers use frame elements with modifications and discussed in-depth below.  The four FEA 

models are shown in Figure 6.3.  Finite Element data for each model is shown in Table 6.2. 

 

 

Figure 6.1.  3-D Frame Element with Degrees of Freedom. (Reproduced from Fu and Wang, 
2015) 

 

 

Figure 6.2.  3-D Shell Element. (Reproduced from CSI Analysis Reference Manual, 2015) 
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Table 6.2.  Finite Element Model Data 

 

Bridge 
DOF Joints 

Frame 

Elements 

Shell 

Elements 

Solid 

Elements 
Links 

Jeff. 

Barracks 
4,633 520 770 142 0 4 

City Island 2,700 316 504 184 0 4 

Page 

Avenue 
1,680 342 600 132 0 4 

US 24 6,276 852 504 260 224 4 

 

 

Figure 6.3.  FEM Models a) US 24, b) City Island, c) Page Avenue, d) Jefferson Barracks 

 

a b

c d
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6.2.1 Floorsystem.  The primary components of the tied arch floor system are the 

floorbeams, stringers and concrete deck.  These elements can be seen in Figure 6.4 which 

shows the overall models.  As noted in earlier sections, the floorbeams and stringers are 

modeled in SAP2000 using frame elements located at the centroid of the member while the 

deck is modeled using shell elements also located at the centroid of the deck.  While various 

authors, Fu and Wang (2015), demonstrate the viability for modeling each of these elements 

in a more refined way, i.e., comprising stringers with frame elements for flanges and plate 

elements for webs, this level of refinement is unwarranted for this analysis and greatly 

increases the computational time.  The floorsystem members are connected using offsets and 

massless rigid links within the SAP2000 software.  These connections are shown in Figure 

6.4.  The offset and rigid links permit the model to capture the spatial relationship of the 

actual bridge floorsystem.  Typically for major bridges designed and constructed in the 1960s 

and 1970s no composite behavior exists between the concrete bridge deck and stringers.  As a 

result, the plate shear, f22, is zeroed for those applications without composite behavior for 

the floorsystem.  The Page Avenue Bridge does have composite action between the concrete 

bridge deck and stringers via a series of shear connectors on the stringers. 

 

Figure 6.4.  Rigid Link Connections for Floorsystem 

C.L Conc Deck

C.L. Floorbeam 

Stringers 

(Typ.) 

Rigid Links 

(Typ.) 
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6.2.2 Hangers. The hangers are bridge rope or strand and are tension-only 

elements.  To capture this behavior, non-linear frame elements are used in the model.  The 

frame element used for the hangers is similar to that of Figure 6.1 except that the rotational 

degrees of freedom, θy and θz are released.  Tension-only restraints are placed on the axial 

degree of freedom along the element longitudinal axis, u.  Compressive forces in the hangers 

are set to zero.  CSI (2015) notes that any axial shortening below the compression limit will 

occur with zero axial stiffness.   The frames for the hanger ropes are typically a single 

element.  As the overall static and dynamic behavior of the bridges is at interest, the single 

element limits the results for the hanger elements.   For a focus on the dynamic behavior of 

the hanger frame elements can be meshed into additional elements to provide a more accurate 

results of the dynamic behavior.  Additional hanger elements in the overall model create a 

large number of modes pertaining to the hangers only thus obscuring the overall dynamic 

performance of the bridge.   

6.2.3 Bridge Piers.  The main piers are included in the model due to the influence 

of their stiffness on the longitudinal, transverse and rotational behavior of the main tied arch.  

The piers supporting the tied arches of the study vary in form.  See Figure 6.3 for a general 

view of the pier models.  Main piers for the tied arch bridges vary from simple wall piers to 

piers comprised of beams, columns and shafts (walls).  The base of the shafts (walls) is 

founded on footings that are, in turn, founded on piling or rock.  Several of the main piers 

have deep concrete seal courses below the footings where piling is present.  This is largely 

due to methods of construction and these seal courses are typically well below the riverbed 

and any effects on the pier stiffness are assumed to be neglible.  To simplify the analysis, the 

bridge piers are assumed to be fixed at the bottom of the shaft, unless noted otherwise.  Wall 

piers are modeled using thick shell elements.  These thick shell elements differ from the thin 
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shell elements used to model the concrete deck.  The deck shell elements are based on a 

Kirchoff formulation and do not have the transverse shear that the thicker shell element have, 

based on a Mendlin/Reissner formulation (CSI Analysis Reference Manual, 2015).   

6.2.4 Bridge Bearings.  The main bearings provide either fixity or movement in 

the longitudinal direction.  Fixed bearings restrain translation in all coordinate directions but 

provide rotation about the transverse axes (in the longitudinal direction).  Expansion bearings 

restrain translation in all but the longitudinal direction and also provide rotation about the 

transverse axis.  Some bearings are multi-rotational and provide rotation about the transverse 

and longitudinal axes.  Special elements within SAP2000 are used to model the bearing 

behavior.  Link elements are used to span the distance from the main bridge to the 

substructure and emulate the behavior of the as-designed bearings.  Two special link 

elements are developed for these bridges; a fixed link and an expansion link.  A 

representation of the link element, for the longitudinal axis, (Gobal X), is shown in Figure 

6.5.  The fixed link in all of the bridges provides a link between the end joints of the tied arch 

to the substructure.  The fixed links restrain translation in all direction but provide rotation in 

the longitudinal direction.  Any translation that is experienced by the fixed end joints of the 

tied arch force these movements onto the main pier similar to how the bridge physically 

interacts with the main pier.  From Figure 6.5 the fixed link element would not have a 

translational spring, KL but retains the rotational spring, Kθ.  Expansion links also connect the 

tied arch end joints to the substructure or main pier.  The expansion links permit the tied arch 

expansion end to move independently with respect to the main pier below, again, just as the 

actual bridge and pier will.  The expansion link also restrains movement in the vertical and 

transverse directions and provide for rotation in the longitudinal direction. Figure 6.5 depicts 

a link element showing only the longitudinal translational spring, KL along with the rotational 
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spring, Kθ.  The rotational spring as shown provides rotational about the transverse bridge 

axis (Global Y) or link local axis 3.   The remaining DOF and coordinate axes are similar.  

The vertical and transverse translation remains fixed for all bridge bearings as does the 

rotational DOF about the vertical axis and the longitudinal axis. 

 

 

Figure 6.5.  Visualized Link Element used for Bridge Bearings 

 

6.2.5 Approach Spans.  A dynamic analysis is a direct result of the system mass 

and stiffness as well as the system supporting the structure.  This is true unless the structure is 

decoupled from the supporting system through some isolation system.  For the four bridges in 

this study, there is no isolation system in place.  As a result it’s imperative that the mass and 

stiffness of the immediate main piers supporting the tied arch bridge be included in any 

analysis of the tied arch bridge itself.  Moreover, it’s important to recognize the impact of the 

approach structure stiffness has on the main structure.  At the fixed pier, where the tied arch 

is coupled to the main pier and, in turn, the pier is coupled to the approach structure the 

approach superstructure and fixed substructure will influence the longitudinal and transverse 

stiffness.  A similar situation occurs in the transverse direction for the expansion pier.  The 

mass of the approach spans adjacent to the main span provide a direct influence, the 

remaining approach span mass may be negligible as it is distributed to substructure units well 
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before influencing the main spans.  This study omits the influence of the approach spans on 

the overall dynamic performance of the tied arch bridge itself.  However additional studies 

should confirm this assumption.  If the purpose of the dynamic analysis is seismic 

performance and results then the adjacent spans or their influence should be included in that 

analysis.   

6.2.6 Upper and Lower Bound Stiffness. Meyer (1987) provides the FEA analyst 

with several best practices which should be incorporated in static and dynamic structural 

analysis.  One such practice for dynamic analysis of structures is to bracket the structural 

response to upper and lower bound stiffness values.  Determining what components and the 

values of stiffness for the same, of course, relies heavily on engineering judgement and 

familiarity with the structural arrangement.  For example, Meyer suggests evaluating material 

properties which may be affected by age or condition due to years in service.  It is 

recommended that the upper bound stiffness for concrete structures include uncracked 

section properties and a modulus of elasticity for concrete that reflects aged compressive 

strength of concrete rather than the usual design compressive strength of concrete.  For the 

lower bound values, the effective moment of inertia and concrete design modulus of elasticity 

is used.  Moreover, the dynamic behavior is influenced by the bridge support conditions 

(bearings).  While the bearings typically remain in place for the life of the structure, the 

condition and performance change greatly over time.  This is especially true for the 

expansion bearings.  Generally, the expansion bearings mimic the design assumptions in the 

early years of service but over time their condition deteriorates to where the bearings are 

locked up thereby exhibiting the performance of fixed bearings.  For this study the expansion 

bearing behavior (movement) is coupled with the uncracked concrete or upper bound 

stiffness.  The locked expansion bearings are used with the cracked section properties or 
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lower bound stiffness.  Table 6.3 lists the upper and lower bounds for the models.  The 

recommended values for the upper limit modulus of elasticity and effective moment of inertia  

is found in Priestley, Sieble, and Calvi (1996).  Figure 4.9 of the Priestley, Sieble, and Calvi 

reference shows that for low axial load ratios (P/f’cAg) and low ratios of ρ the elastic stiffness 

ratio, Ie/Ig, approach a range from 0.25 to 0.30.  This results in Ie = 0.25-0.30(Ig).  For this 

study a ratio of 0.25 is used since many of the structure have been in service for some time 

increasing the likelihood of cracked conditions. 

 
Table 6.3.  Stiffness Limits for Concrete Members 

 Modulus of Elasticity Moment of Inertia 

Element Lower Limit Upper Limit Lower Limit Upper Limit 

Concrete Deck Ec √1.3 * Ec Ie Ig 

Concrete 

Column 
Ec √1.3 * Ec Ie Ig 

Concrete Shaft Ec √1.3 * Ec Ie Ig 

 

 
6.3. BRIDGE MODEL CALIBRATION 

The finite element method (FEM) is a numerical method based on mathematical 

modeling, assumptions and input to produce output matching observed physical behavior.  

For a structure, this input may include external loading while the mathematical model is a 

generalized equation describing the force-deformation (f-δ) relationship for an element, i, 

having stiffness, Ki.  In the absence of actual observed output, the result of the FEM may be 

either satisfactory or unsatisfactory.  Satisfactory results are those outcomes that match 

predicted or observed behaviors and follow correct modelling, assumptions, and input.  



www.manaraa.com

91 
 

Wherein the outcomes are known a priori the FEM can be, and often is, calibrated or adjusted 

to match those outcomes provided they also result from appropriate and correct testing.  For 

this study, the results of the four FEM were compared with engineered results in the design 

plans.   

The FEM of the four tied arch bridges are based on the knowledge base developed 

over many, many years by researchers and practicing engineers that is captured, in part, by 

Meyers (1987) and Fu and Wang (2015).  The results of the FEM were compared with the 

original engineering design plans for the dead load case for the bearing, hangers, tie girder 

and arch rib.  Moreover, where available, the member deflections from the FEM were also 

compared with the engineering design plans.  Initial results from the FEM indicated that 

overall structural steel weight was low by 10-20% depending on the bridge.  Engineers often 

estimate the miscellaneous steel (stiffener plates, splice plates, and, in this case, internal 

diaphragms) as 10-15% of the overall weight of the member.  External diaphragms were not 

added to the model as their contribution to the overall lateral stiffness is negligible compared 

to the large, inherent in-plane stiffness of the concrete bridge deck.  As a result, the apparent 

weight deficit can be explained and adjusted by adding a percentage of weight for a specific 

steel element.  The arch ribs were assigned the highest increase in weight due to the internal 

stiffeners, diaphragms and more robust splice plates.  The floorbeams and stringers received 

the next highest adjustment followed by the tie girder.  Once the concrete slab, barrier curb, 

future wearing surface and where applicable, median barriers were added a second 

adjustment was necessary to match the concrete dead load noted on the design plans.  Again, 

this value differed by about 5-10% and is explained primarily by lack of concrete haunches in 

the FEM but that are typically situated between the stringer and nominal depth concrete deck.  

Since the stringers for major bridges are typically not cambered, the haunch concrete can be 
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more than typically encountered in slab on stringer or plate girder bridges.  Depending on the 

bridge, an increase in the concrete bridge deck by percentage of the overall weight is made.  

The final results of the full dead load for bridge members are listed in Table 6.4.  The 

deflections of the Tennessee River Bridge are reported and compared in Table 6.5.  This set 

of design plans is the only one of the four to directly report the deflections for dead load. 

6.4. FINITE ELEMENT MODEL RESULTS 

Presented in this section are the results of the static FEA for the four tied arch 

bridges.  The results are presented in Table 6.4 and Table 6.6 for static axial loads resulting 

from dead load and live load.  The live load includes both HS20 and HL93 for comparison to 

the original design plans and for comparison to the current AASHTO live load requirements.  

Impact is not included in these results.  Tables 6.7 and 6.9 also include the major axis 

moment, M33, for live load.  Insight is provided into the dead load to live load force effect 

ratios.  Deflection comparisons are made for the Tennessee River Bridge in Table 6.5 while 

Tables 6.8 and 6.9 compare reactions resulting from LRFD to the original design methods.  

Table 6.10 list the parametric study of the second moment of inertia for the rib and tie girder 

to the resulting moment in both elements. 

 

Table 6.4.  Bridge Model Force Comparisons 

Bridge 
Axial Force (kips) – Dead Load1 Only 

Arch Rib Tie Girder Hanger Bearing (each) 

 FEA Plans FEA Plans FEA Plans FEA Plans 

Jefferson Barracks 

 

5,640 5447 4325 5445 373 349 4557 4392 

City Island 3959 3981 3886 3975 345 345 3234 N/A 
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Table 6.4.  Bridge Model Force Comparisons (cont.) 

Page Avenue 4435 3987 3745 3983 388 398 3715 3712 

Tennessee River 2653 2700 2105 2297 175 183 1506 1564 

1 – Dead load is comprised of structural steel and concrete elements and includes 
future wearing surface weight. 

 

Table 6.5.  Bridge Model Deflections Comparison   

Tennessee River 

Bridge 

Deflection (feet) – Dead Load Only 

FEA Plans 

Panel Pt. 7 0.605 0.569 

Panel Pt. 6 0.585 0.556 

Panel Pt. 5 0.530 0.517 

Panel Pt. 4 0.448 0.453 

Panel Pt. 3 0.346 0.366 

Panel Pt. 2 0.233 0.259 

Panel Pt. 1 0.119 0.139 

 

Table 6.6.  Bridge Model Force Comparisons 

Bridge 

Axial Force (kips) – Live Load1 Only 

Arch Rib Tie Girder Hanger Bearing (each) 

FEA Plans FEA Plans FEA Plans FEA Plans 

Jefferson 

Barracks 
-715 -652 532 651 68 58.1 -436 -543 

City Island -576 -498 428 351 51 47 -384 N/A 

  



www.manaraa.com

94 
 

Table 6.6.  Bridge Model Force Comparisons (cont.) 

Page Avenue 

7lanes 
-849 -517 813 396.3 100 93.3 -744 -746 

Tennessee 

River 
-488  -468  375  414  44.8 45.2 -308 -284 

1 – Live Load is comprised of the maximum of HS20-44 Truck, Lane Load or 
Alternate Military Loading.  Page Avenue live load includes a 1.25 factor on the 
aforementioned live loads.  No impact is included in this table. 

2 – Negative values are compression, positive are tension 

 

Table 6.7.  Bridge Model Force Comparisons 

Bridge 

Moment, M3-3 (ft-kips) – HS20 Live Load1 Only 

Arch Rib Tie Girder 

FEA Plans FEA Plans 

Jefferson 

Barracks 
-1485 -2009* 12,076 16,371* 

City Island 770 737 6,371 7,124 

Page Avenue 

FEA 7-lanes 
3,300 3,192 11,617 11,173 

Tennessee 

River 
-334  -331  5,287  5,964  

* – Live Load includes Impact 

 

Table 6.8.  Bridge Model Force Comparisons Unfactored Live Load LRFD and Pre-LRFD 

Bridge 
Axial Force (kips) – Live Load1 Only 

Arch Rib Tie Girder Hanger Bearing (each) 
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Table 6.8.  Bridge Model Force Comparisons Unfactored Live Load LRFD and Pre-LRFD 
(cont.) 

 HS20 HL93 HS20 HL93 HS20 HL93 HS20 HL93 

Jefferson 

Barracks 
-652 -768 651 651 58 83 -543 -470 

City Island -498 -630 351 491 47 60 -384 -431 

Page Avenue -517 -578 396 530 93 63 -746 -619 

Tennessee 

River 
-468  -637 414  457  45  57 -284 -379 

1 – Live Load is comprised of the maximum of HS20-44 Truck, Lane Load or 
Alternate Military Loading.  Page Avenue live load includes a 1.25 factor on the 
aforementioned live loads.  No impact is included in this table. 

2 – Negative values are compression, positive are tension 

 

Table 6.9.  Bridge Model Force Comparisons Unfactored Live Load LRFD and Pre-LRFD 

Bridge 

Moment, M3-3 (ft-kips) – Live Load1 Only 

Arch Rib Tie Girder 

HS20 HL93 HS20 HL93 

Jefferson 

Barracks 
2009 2030 16,371 16,156 

City Island 737 1,000 7,124 8,090 

Page Avenue  3,192 2,576 11,173 9,158 

Tennessee 

River 
-331  -406  7,217  5,964  
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Table 6.10.  Bridge Parametric Comparison, Rise to Span = 1:6; 14 Panels  

Tennessee River 

Bridge 

Live Load (HS20-44) Only 

Arch Rib 

M33 (ft-kips) 

Arch Tie 

M33 (ft-kips) 

Arch Hanger 

Axial Load (kips) 

Itie:Irib = 0.084 

Atie:Arib = 0.82 
349 5030 44.8 

Itie:Irib = 0.1 

Atie:Arib = 0.1 
458 5507 50 

Itie:Irib = 0.5 

Atie:Arib = 0.5 
1743 4155 59 

Itie:Irib = 1.00 

Atie:Arib = 1.0 
2723 3454 63 

Itie:Irib = 10 

Atie:Arib = 10 
6162 1399 69 

Itie:Irib = 20 

Atie:Arib = 20 
6905 1172 65 

Itie:Irib = 40 

Atie:Arib = 40 
7741 1102 65 
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7. BRIDGE DYNAMIC CHARACTERISTICS 

7.1. GENERAL  

Advanced knowledge of dynamic properties is important in ensuring improved 

performance of the bridge during wind, traffic, and earthquake induced vibrations.  The 

resulting characteristics can assist researchers and engineers to plan successful field, ambient 

vibration testing and can be a foundation on which to build information of the bridge 

regarding structural health monitoring.  To date a wealth of information is available on the 

dynamic characteristics of suspension bridges, cable stayed bridges and even smaller, more 

routine slab on girder bridges.  Thus this section explores the dynamic characteristics and 

performance of medium to long span tied arch bridges.   

7.2. DYNAMICS  

The dynamic performance of the bridges of this study can be succinctly expressed 

using the equation of motion for an undamped multiple degree of freedom system. 

0   Equation 7.1 

where [M] and [K] are the mass and stiffness matrices for the structural system respectively.   

and  that couples the MDOFs.  	and	  are the displacement and acceleration vectors of 

the structure respectively.  Equation 7. 1 is also known as an eigenvalue problem for which a 

characteristic equation is developed as noted in the SAP2000 reference manual (CSI, 2015): 

Ω Φ 0  Equation 7.2 

the roots are eigenvalues or squared natural frequencies Ω2.  For each eigenvalue there is a 

corresponding eigenvector or natural mode, Φ.  These natural frequencies and modes are 

specific to the structure under investigation and are functions of the system mass, stiffness 
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and displacement function which is dependent on boundary conditions imposed on the 

system such as pinned or fixed supports.  The frequencies and modes are extracted from the 

SAP2000 model programs and evaluated based on a range of possible external excitation 

frequencies.  Moreover, each of the modes will have a qualitative effective mass participation 

factor to assist in determining which modes are most likely to influence the dynamic 

performance.  Those modes with small effective mass participation factors indicate little 

impact on dynamic performance or resonance.  As a general rule, all modes having a mass 

participation factor above 0.01 will be included in the results. 

AASHTO (2012) suggests natural frequencies, mode shapes, distributions of mass 

and stiffness, damping of a structure under investigation should be considered prior to 

starting a dynamic analysis.  Moreover, frequency of the forcing function, duration and 

directionality of external effects on the structure should also be known a priori for best 

results.  This is especially true for “irregular” bridges, a term AASHTO uses to describe 

structures with unusual distribution of mass, for example concrete and steel superstructures 

that share supporting substructure, abrupt changes in stiffness such as a bridge over a gorge 

having short and tall substructure, curved geometry, or non-linear elements.  Tied arch 

bridges may be classified as irregular due to curved geometry of the arches, long, slender 

elements and abrupt stiffness changes at the tied arch knuckles, and tension only cables. 

A discussion on the source of vibration, frequency range, duration and directionality 

follows. 

7.3. EARTHQUAKE INFLUENCED BRIDGE DYNAMICS  

Earthquakes are naturally occurring hazards present worldwide where events happen 

every day.  Most such events are small and pose no threat to the built environment however 
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each year the USGS (2016) records about 20,000 per year, the vast majority having 

magnitude 4.9 or less.  See Figure 7.1.  Still observations show that earthquakes having 

magnitude between 6 and 7.0 number into the thousands while those above 7 are less than 20 

per year.  Most of these earthquakes occur at specific locations such as tectonic plate 

boundaries.  However the central United States, the region of interest to this study, has a 

unique intraplate feature forming a complex network of faults in the southern Missouri, 

Illinois, western Kentucky, Tennessee and northern Arkansas that remains active.  Based on 

historical data the collection of faults in the aforementioned Central US region has the 

potential to produce large magnitude earthquakes having a high frequency content over a 

long duration and distance.  This lack of attenuation is due largely to the make-up of the local 

geology.   

 

 

Figure 7.1.  Central US Earthquakes from 1800 to 1995 in the New Madrid Seismic Zone and 
Wabash Valley Seismic Zone.  Image from http://www.showme.net/~fkeller/quake/maps.htm  

Bridge Locations are also noted 1-4 

The predominant period of strong ground motion is approximately in the range of 

0.5s to 0.8s.  This range coincides with the natural period for many routine bridges.  Design 
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earthquake spectra place limitations on the lower period range of the acceleration response 

spectra (ARS) to ensure an appropriate force level for structure response in the low period 

range.  Outside this range, the ARS diminishes greatly per the design code.  However, this 

isn’t always the case and for many sites structures can be just as impacted by higher period, 

lower frequency regions of the ARS.  An example of a site specific ARS for a site near 

Caruthersville, MO is show in Figure 7.2.   This site is less than 100 miles from the US 24 

bridge over the Tennessee River, see Figure 7.5.  Figure 7.2 provides ARS for both 

longitudinal and transverse (to bridge centerline) for three return periods, 500-yr, 1000-yr, 

and 2500-yr.  The 500-yr spectrum maintains a relatively flat decrease in acceleration from 

2s to 6s.  And the two upper level spectra have relatively large accelerations for longer period 

structures.  Thus evaluating the natural period for major bridges over a period range of 0.5s to 

5s would not be unreasonable.  In addition to frequency content, duration of strong motion is 

an indicator of damage to structures.  As noted earlier, the duration of ground shaking is 

generally accepted to be longer in the Central US due to the geology.  Moreover, the dense 

soil deposits, particularly in the New Madrid Seismic Zone (NMSZ) can be expected to 

amplify the surface and structure response.  Kramer (1996) presents a listing of bracketed 

durations for recorded earthquakes having epicentral distances of less than 10km.  The 

bracketed durations are defined by the limits of first and last exceedance for a ±0.05g 

threshold.  From that list we can expect durations for soil sites of 16s to 45s for magnitude 6 

to 7.5 events respectively.  Using a similar approach on the Caruthersville, MO time histories 

for the 500-yr and 2500-yr longitudinal components, see Figures 7.3 and 7.4, yields durations 

from 65s to 72s. 
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Figure 7.2.  Site Specific Spectra for Caruthersville, MO.  MoDOT/Jacobs April 2008 

 

 

Figure 7.3.  500-Yr Longitudinal Time History at Caruthersville, MO site 
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Figure 7.4.  2500-Yr Longitudinal Time History at Caruthersville, MO site 

 

 

Figure 7.5.  Caruthersville Site Location and Location of US 24 Bridge 

 

Summarizing, the impact of earthquake induced ground motions on major bridges, 
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lower end of the spectrum, longer period waves, surface waves, will impact less the resilience 

of the structure but pose concerns of greater displacements.     

7.4. WIND INFLUENCED BRIDGE DYNAMICS 

Svensson (2012) categorizes wind induced vibrations into three categories, turbulence 

induced, vortex induced and motion induced.  He further summarizes the causes as random 

variations in wind speeds, shedding of vortices from the body, and rhythmic motion of the 

body in flow respectively.  As with other dynamic effects, the structures natural frequencies 

and modes are indicators of performance to overall performance.  In general, the longer the 

bridge the more flexible the bridge super and substructure are.  Moreover, the more flexible a 

structure is the higher the natural period and conversely the lower the natural frequency.  

This, Svensson (2012), advises is an indication of susceptibility to wind related vibrations.   

Though the analysis of wind induced vibrations is complex, multiple authors 

Brockenbrough and Merritt (1994), Podolny and Scalzi (1976) and Troitsky (1988) suggest a 

simple formula to check for resonance due to wind velocity.  The relationship is based on 

vortex shedding and is presented below: 

   Equation 7.3 

Where: 

f = the frequency of the pulsating pressure due to vortex shedding. 

V = the wind speed 

S = the Strouhal number 

D = is the characteristic dimension, measured normal to the wind direction. 
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Rearranging the equation to solve for the wind speed for a specific set of structural 

frequencies:   

   Equation 7.4 

Generally, the lowest flexural and torsional frequencies will be of interest and by the 

direct relationship above will produce the lowest velocities expected to cause resonance.  The 

variable, D, is taken as the depth of the superstructure and the Strouhal number can be 

determined from Brockenbrough and Merritt (1994) or Knisely (1990).    For a rectangular 

cross section, the Strouhal value is provided for various aspect ratios (width to depth), b/d.  

Table 7.1 presents the results of the critical wind speed for each of the bridges, using the 

lower bound stiffness models.  

Table 7.1.  Critical Wind Speed based on Bridge Frequencies 

Bridge 
Depth 

(ft) 

Width 

(ft) 

Aspect 

Ratio 
St 

fb 

Hz 

ft 

Hz 
ft /fb 

Vcr-b 

(mph) 

Vcr-t 

(mph) 

Jefferson 

Barracks 12.0 62.0 5.2 0.10 1.10 1.13 1.03 

 

90 

 

93 

City Island 9.8 70.0 8.0 0.07 0.39 1.25 3.18 38 120 

Page Avenue 12.6 90.9 7.2 0.08 1.02 1.11 1.09 109 118 

US 24 9.0 46.0 5.1 0.10 1.48 - - 91 - 

St – is the Strouhal Number and flexural and torsional frequencies are noted fb and ft. 

The results of the table above are based on preliminary work and not the complex 

analysis necessary to thoroughly vet performance of wind induced vibrations.  There are 

many variables to address prior to completing the wind analysis.  The frequencies reported 
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above are based on the lower bound stiffness, which assumes cracked section properties of 

the concrete deck and substructure.  Additionally, the expansion bearings are assumed to be 

near perfect rollers permitting unhindered expansion and contraction.  Still, the information 

still affords insight into the likely performance of the bridges with respect to vortex shedding.   

1.  The first observation is looking back through AASHTO for guidance on this 

phenomenon only to find no design criteria aimed at preventing vortex shedding.  The 

Eurocode, however, requires the critical wind speed, Vcr, resulting from Equation 7.4 to be 

greater than 1.25vm, where vm is the 10-minute mean wind speed.  An example of the 

magnitude for the 10 minute mean wind speed is about 65 mph for St. Louis, MO.  The 

resulting values in the table would need to be above 82 mph to avoid shedding impacts per 

the Eurocode. 

2.  According to the results the City Island Bridge may be vulnerable to vortex 

shedding in the first vertical mode of vibration.  There are a number of explanations for the 

lack of reported wind induced vibrations.  As noted above, this analysis is based on arbitrary 

reduced stiffness and natural free vibration so that damping is not included.  The structure 

will contain some damping effects and more so if the concrete is, in fact, cracked.  The 

concrete may not be cracked to the extent of the assumptions made in this analysis.  

Additionally, while it’s not uncommon to for an area to experience wind gusts of 38 mph it is 

unlikely to experience sustained wind speeds to permit the structure to respond in resonance. 

3.  Reviewing the City Island aspect ratio we see a relatively shallow superstructure 

depth for the overall width.  This characteristic will influence the stiffness, resulting in a 

more flexible superstructure.  This is confirmed by the low frequency for the first vertical 

mode of vibration, 0.39 Hz and a 2.5s period. 
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4.  Upon evaluating the results, a more rigorous dynamic wind analysis may be 

planned to ascertain the performance for a bridge having such a low critical wind velocity. 

5.  The remaining bridges appear to perform beyond the range of vortex shedding. 

7.5. TRAFFIC INFLUENCED BRIDGE DYNAMICS 

Vehicles passing over bridges induce vibrations in a range of bridge members and 

can play a role in metal fatigue depending on the details, level of traffic and, of course, the 

potential for resonance of the passing frequency with the structural element natural 

frequency.  In lieu of a rigorous vehicle-structure interaction model to assess vibration, the 

excitation frequency is determined from a vehicle passing over the series of floorbeams 

located at each panel point.  Thus the excitation frequency can be determined from the 

equation: 

Ω   Equation 7.5 

Where Ω  is the excitation frequency caused by the passing vehicle 

Vv = velocity of the vehicle in feet per second. 

S= Panel spacing, feet. 

All of the bridges are located on state highways or interstates and as a result have 

credible speed limits of 55-70 mph.   Table 7.2 list the excitation for those two speeds for 

each bridge.   

Table 7.2.  Vehicle Excitation Frequency 

Bridge Panel Spacing (ft) Vv = 55 mph Vv = 70 mph 

Jefferson Barracks 50.5 1.7 Hz 2.0 Hz 



www.manaraa.com

107 
 

Table 7.2.  Vehicle Excitation Frequency (cont.) 

City Island 41.88 2.1 Hz 2.5 Hz 

Page Avenue 38.5 2.3 Hz 2.7 Hz 

US 24 38.2 2.3 Hz 2.7 Hz 

 

A review of the frequencies resulting from the modal analysis, Tables 7.4-9, shows 

that the forcing frequencies in Table 7.2 coincide with the higher modal frequencies of the 

bridges.  This may very well explain the inherent and persistent vibration of the bridges felt 

by pedestrians or inspectors present on the bridges during traffic.  It is unlikely that this 

vibration, while felt, is detrimental unless one or more of the individual structural members 

has a similar or near similar frequency.  Several members will be modeled to determine their 

natural frequencies and compare with those from Table 7.2. 

7.6. BRIDGE MODAL ANALYSIS RESULTS 

The results of the dynamic analysis are tabulated below for each of the four bridges.  

Included in the tables are mode description, period, frequency, mode shape, and mass 

participation for the corresponding mode.  Finally, presented below are the results of a simple 

parametric analysis demonstrating the influence of tie girder axial and flexural stiffness, rib 

flexural stiffness, hanger axial and flexural stiffness has on the overall bridge frequency. 

Table 7.3 provides the total mass participation for each of the analysis per bridge.  

Tables 7.4 to 7.11 provide a summary of dynamic properties for each bridge with both upper 

and lower bound stiffness. 
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Table 7.3.  Total Mass Participation for Dynamic Analysis 

 

Bridge 

Global Axes Summary of Total Mass Participation (%) 

Lower Bound Stiffness Upper Bound Stiffness 

X Y Z X Y Z 

Jefferson Barracks 92 77 43 89 46 42 

City Island  89 62 45 68 59 42 

Page Avenue 92 73 45 83 51 44 

US 24 56 55 18 51 20 17 

 

 
Table 7.4.  Tennessee I-24 Bridge - Dynamic Properties, Lower Bound Stiffness 

Mode 
Period 

Sec 

Frequency 

Hz 
Shape 

Mass 

Participation 

Longitudinal 1.945 0.514 
 

28% 

1st Transverse 1.642 0.609 
 

15% 

2nd Longitudinal 1.608 0.622 

 

9.4% 

2nd Transverse 1.149 0.870 
 

1% 

3rd Longitudinal 

(Pier) 
1.004 0.996 

 

14% 

1st Vertical 0.871 1.482 
 

2.6% 
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Table 7.4.  Tennessee I-24 Bridge - Dynamic Properties, Lower Bound Stiffness (cont.) 

2nd Vertical 0.652 1.533 
 

13.9% 

3rd Transverse 0.352 2.837 
 

7.4% 

4th Longitudinal 

(Pier) 
0.245 4.078 

 
3.1% 

5th Longitudinal 0.225 4.443 
 

1.1% 

 

Table 7.5.  Tennessee I-24 Bridge - Dynamic Properties, Upper Bound Stiffness 

Mode 
Period 

Sec 

Frequency 

Hz 
Shape 

Mass 

Participation 

Longitudinal 1.698 0.589 
 

1.1% 

Transverse 1.489 0.672  13.4% 

2nd Transverse 1.130 0.888 
 

2% 

Vertical 0.871 1.148 

 

2.2% 

2nd Longitudinal 0.816 1.226 
 

47.0% 

2nd Vertical 0.639 1.565 

 

13% 
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Table 7.5.  Tennessee I-24 Bridge Dynamic Properties, Upper Bound Stiffness (cont.) 

3rd Transverse 0.342 2.922 
 

2.2% 

 

 
Table 7.6.  City Island Bridge - Dynamic Properties, Lower Bound Stiffness 

Mode 
Period 

Sec 

Frequency 

Hz 
Shape 

Mass 

Participation 

Longitudinal 3.550 0.282 
 

60% 

1st Vertical 2.535 0.394 
 

1.3% 

Transverse 2.042 0.490  49% 

2nd Vertical 1.254 0.797 
 

1% 

Long. Pier 1.206 0.829 
 

8.7% 

Torsional 0.797 1.254 

 

3.2% 

3rd Vertical 0.779 1.283 
 

41% 

2nd Transverse 0.642 1.557 
 

8.8% 

4th Vertical 0.473 2.113 
 

2.4% 

3rd Transverse 0.358 2.797 
 

1.0% 
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Table 7.6.  City Island Bridge - Dynamic Properties, Lower Bound Stiffness (cont.) 

2nd Long. Pier 0.275 3.632 
 

9.5% 

 

Table 7.7.  City Island Bridge - Dynamic Properties, Lower Bound Stiffness 

Mode 
Period 

Sec 

Frequency 

Hz 
Shape 

Mass 

Participation 

Longitudinal 2.578 0.388 
 

1.6% 

1st Transverse 1.724 0.580  40% 

2nd Longitudinal 1.259 0.794 
 

67% 

1st Vertical 1.249 0.800 
 

1% 

1st Torsional 0.766 1.306 

 

1% 

2nd Vertical 0.762 1.312 
 

39% 

2nd Torsional 0.476 2.101 

 

2.1% 

3rd Vertical  0.469 2.131 
 

2.4% 

2nd Transverse 0.438 2.280 
 

7% 
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Table 7.7.  City Island Bridge - Dynamic Properties, Upper Bound Stiffness (cont.) 

3rd Transverse 0.297 3.368 
 

4.4% 

4th Transverse 0.274 3.655 
 

3.8% 

 

Table 7.8.  Page Avenue Bridge - Dynamic Properties, Lower Bound Stiffness 

Mode 
Period 

Sec 

Frequency 

Hz 
Shape 

Mass 

Participation 

Transverse 3.605 0.277 
 

9.5% 

Longitudinal 2.019 0.495 
 

9.6% 

2nd Longitudinal 1.591 0.628 
 

54% 

2nd Transverse 

w/Torsion 
1.391 0.719 

 
30% 

3rd Transverse 

w/Torsion 
1.161 0.861 

 
8% 

3rd Longitudinal 

(Pier) 
1.024 0.976 

 
21% 

Vertical  0.984 1.016 
 

2.2% 

2nd Vertical 0.714 1.401 
 

40.6% 

4th Transverse 0.431 2.322 
 

22% 

  



www.manaraa.com

113 
 

Table 7.8.  Page Avenue Bridge - Dynamic Properties, Lower Bound Stiffness (cont.) 

3rd Vertical 0.377 2.651 
 

1.3% 

5th Transverse 0.283 3.532 
 

2.2% 

4th Longitudinal 

(Pier) 
0.275 3.66 

 

6.6% 

 

Table 7.9.  Page Avenue Bridge - Dynamic Properties, Upper Bound Stiffness 

Mode 
Period 

Sec 

Frequency 

Hz 
Shape 

Mass 

Participation 

Transverse 3.533 0.283 
 

8.5% 

Longitudinal 1.977 0.506 
 

1.7% 

2nd Transverse 1.281 0.781 
 

18.7% 

3rd Transverse 1.117 0.895 
 

14.2% 

Vertical 0.979 1.021 
 

1.9% 

2nd Longitudinal 0.751 1.331 
 

64.9% 

2nd Vertical 0.683 1.463 
 

32.6% 

4th Transverse 0.327 3.059 
 

7.8% 
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Table 7.10.  Jefferson Barracks Bridge - Dynamic Properties, Lower Bound Stiffness 

Mode 
Period 

Sec 

Frequency 

Hz 
Shape 

Mass 

Participation 

Longitudinal       3.199 0.313 
 

9% 

1st Transverse 3.026 0.330  26% 

2nd Longitudinal    1.924 0.520 

 

59% 

2nd Transverse 1.815 0.551 
 

13% 

3rd Longitudinal 

(Pier) 
1.088 0.919 

 

22% 

1st Vertical 0.908 1.102 

 

40% 

1st Torsion 0.883 1.132 

 

1.8% 

2nd Torsion 0.585 1.708 

 

1.4% 

2nd Vertical 0.547 1.827 

 

2.0% 

3rd Transverse 0.429 2.328 
 

9.8% 
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Table 7.10.  Jefferson Barracks Bridge - Dynamic Properties, Lower Bound Stiffness (cont.) 

4th Transverse 0.405 2.468 
 

2.3% 

5th Transverse 0.294 3.403 
 

21% 

 

Table 7.11.  Jefferson Barracks Bridge - Dynamic Properties, Upper Bound Stiffness 

Mode 
Period 

Sec 

Frequency 

Hz 
Shape 

Mass 

Participation 

Longitudinal       3.061 0.327 
 

4% 

1st Transverse 2.810 0.356 
 

20% 

2nd Transverse 1.592 0.628  17% 

2nd Longitudinal 0.905 1.105 
 

43% 

3rd Transverse 0.876 1.142 

 

1.4% 

Vertical 0.869 1.151 
 

33% 

3rd Longitudinal 0.756 1.323 
 

37% 

2nd Vertical 0.541 1.847 
 

2.2% 
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Table 7.11.  Jefferson Barracks Bridge - Dynamic Properties, Upper Bound Stiffness (cont.) 

4th Transverse 

Torsion 
0.332 3.010 

 
2.4% 

5th Transverse 

Torsion 
0.329 3.037 

 
2.1% 

 

7.7. HANGER DYNAMIC CHARACTERISTICS 

The hangers for each of the bridges were modeled as single frame elements.  Those 

frame elements have the geometric properties of the actual bridge rope or strand.  Moreover, 

the frames were modeled as tension only elements with pinned ends.  To develop the best 

mass participation for the bridge models, the major members of the tied arch were discretized 

into at least four members.  The exception to this was the hanger frame elements and 

ancillary bracing.  The hanger frames were not discretized as the results would be 

overwhelming dominated by the individual hanger frames.  This would result in the 

extraction of a much greater number of eigenvalues.  So for the dynamic analysis the hanger 

frame elements, lower lateral, stringers and floorbeams were not discretized. 

Moreover, the FE model, as developed, for each bridge uses the centerline arch and 

tie for the frame centerlines.  The hanger frames are connected from the centerline of the arch 

to the centerline of the tie.  This results in a longer than actual hanger length which may skew 

the results of an element sensitive to length and axial load for dynamic analysis. 

This section develops the dynamic characteristics of the hangers using equations from 

Roark’s Handbook of Stress and Strain.  The formula for determining the lateral eigenvalues 

for a “string” under tensile axial load is given as: 
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 Equation 7.6 

Where  

f = is the frequency of the member for mode, n, in Hz. 

Kn = π, 2π, 3π for n = 1, 2, and 3 respectively 

T = tensile load, kips 

g = acceleration due to gravity, ft/s2 

w= self-weight of the “string”, kips/ft 

l = length of the member, ft 

The resulting hanger frequency values (only a quarter are listed due to symmetry) are 

noted in the Tables 7.12 through 7.14 below for each bridge.  Both the dead load and live 

load tension are included separately.   

Table 7.12.  Individual Hanger Frequency (Hz) – Mode 1 

Bridge 
Individual Hanger Frequency (Hz) – Mode 1 

Dead Load Live Load Total Load 

Jefferson Barracks 6 - 2 2 – 0.6 6 – 0.6 

City Island 19 - 3 6 - 1 20 - 3 

Page Avenue 23 - 4 7 – 4 24 - 4 

US 24 18 - 4 9 - 2 20 - 4 

The frequencies listed are from the first hanger to the middle hanger. 
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Table 7.13.  Individual Hanger Frequency (Hz) – Mode 2 

Bridge 
Individual Hanger Frequency (Hz) – Mode 2 

Dead Load Live Load Total Load 

Jefferson Barracks 12 - 3 4 – 1.3 12 - 3 

City Island 37 - 6 12 - 2 39 - 7 

Page Avenue 46 - 7 15 – 7 48 - 7 

US 24 37 - 7 18 - 3 41 - 8 

The frequencies listed are from the first hanger to the middle hanger. 

Table 7.14.  Individual Hanger Frequency (Hz) – Mode 3 

Bridge 
Individual Hanger Frequency (Hz) – Mode 3 

Dead Load Live Load Total Load 

Jefferson Barracks 17 - 3 7 – 1.3 19 - 3 

City Island 56 - 9 18 - 3 39 - 7 

Page Avenue 68 - 11 22 – 11 72 - 11 

US 24 55 - 10 26 - 5 61 - 11 

The frequencies listed are from the first hanger to the middle hanger. 

SAP2000 was used to produce results for the dynamic analysis of the City Island 

Bridge hangers.  Table 7.15 conveys the comparison and a third method from Kreyszig 

(1983).   Figure 7.6 shows the mode shapes of the hangers. 

To produce the values tabulated above, the individual bridge rope or strand is 

assumed to be load uniformly, that is all four ropes share the same axial load.  From the 

design plans and our analysis we see that the hanger sets are loaded relatively uniform over 

the length of the bridge with less than 10% difference in the magnitude of the hanger forces.   
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Table 7.15.  City Island Bridge Center Hanger Dynamics 

Frequency, 

mode 

Hz (#) 

Hanger 

Length 

(ft) 

Hanger 

Load1 

(kip) 

Roark’s 

Hz 

Kreyszig 

Hz 

SAP2000 

Hz 

f1 121.6 86 2.432 2.614 2.622 

f2 121.6 86 4.847 5.228 5.244 

f3 121.6 86 7.270 7.841 7.844 

1 – Hanger load includes DL only. 

 

Figure 7.6.  City Island Hanger Mode Shapes, a) first mode, b) second mode, c) third mode 

 

The details typically provide for a spacer to ensure the individual hangers are 

positioned per design.  However, this spacer has negligible effect on the stiffness and does 

not aid force the cables to act together.  The following conclusions may be drawn from the 

tabulated individual hanger frequencies.   

1.  The longer, central hangers have lower frequencies for all three modes of lateral 

vibration.   

2.  There is a very small range of frequencies for the central hangers, though the 

range expands from the shortest to the longest hanger set. 

a b c
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3.  Conversely to item 1 above, the shorter hangers have much higher frequencies.  

On the order of 5-6 times the smaller frequency. 

4.  The hanger frequency is dominated by the dead load. 

5.  The central hangers have low frequencies in mode 1 for most of the bridges and, 

for the longer span Jefferson Barracks Bridge, in modes 1 to 3 that match or will have a 

tendency to match those excitation frequencies for vehicles traveling across the bridge.  As a 

result it would not be uncommon to see the individual ropes vibrate laterally under traffic on 

days with very low wind. 

7.8. STRUCTURAL HEALTH MONITORING APPLICATIONS 

The number of deficient bridges grows each year while the available funds to address 

those deficiencies continue to shrink each year.  Moreover, the average age for bridges 

currently in service approaches the mid 40s for bridges designed during a time when service 

life was 50 to 75 years.  Thus it is more important now than ever to investigate alternate 

approaches to replacement such as strengthening.  Methods used for SHM can also be used to 

ascertain the level of the retrofit as well as the health of that retrofit.  Where new structures 

are a must, plan for structures with extended periods of service life and an integrated system 

that informs the owner of distress before it becomes a crippling financial or life safety 

concern. 

Based on the literature review we understand that much work has been done in this 

area with a focus on major civil infrastructure.  The Golden Gate Bridge, the Humber 

Suspension Bridge and the Tsing Ma Suspension Bridge are examples of bridges having 

sophisticated structural and environmental monitoring systems (Brownjohn, 2006 and 

Ahlborn, 2010).  Yet there are also applications for smaller bridges underway and there is a 
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background of research and actual bridge studies to support modal analysis damage dection 

or structural health monitoring (Hearn and Testa, 1991 and Ren et al 2004).  In addition to 

gaining early notification of structural element distress, the use of in-situ or remote sensoring 

can close the gap in Bridge Information Modeling (BrIM) for analysis models that can be 

updated to reflect and report on the actual performance of structures.  For SHM to be viable it 

must continuously observe structural variables that are compared to baseline characterization 

of structural performance, identifying those occasions where the actual performance contrast 

with the baseline predictions.  To accomplish this we need to ensure the baseline model, that 

is largely based on the original analysis model, is modeled on the structure’s condition and 

current stiffness characteristics.  The scope of this work precludes any field work associated 

with in-situ, on-site field surveying or remote monitoring for tied arch bridges.  However the 

work completed by Ren et al (2004) provides an opportunity to corroborate the results of 

their field study on the US 24 Tied Arch Bridge over the Tennessee River in Kentucky with 

the dynamic study as part of this report.  Moreover it permits us to also confidently examine 

the sensitivity of the dynamic results to changes in stiffness.  Presented below in Figures 7.7 

to 7.11 are the results of a sensitivity study for the natural frequencies as the the stiffness is 

varied for several members of the tied arch bridge. 
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Figure 7.7.  Variation of Frequency vs Arch Rib Stiffness, US 24 Bridge 

 

 

Figure 7.8.  Variation of Frequencey vs Arch Tie Stiffness, US 24 Bridge 
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Figure 7.9.  Variation of Frequency vs Hanger Stiffness, US 24 Bridge 

 

 

Figure 7.10.  Variation of Frequency vs Bearing Stiffness, US 24 Bridge 
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Figure 7.11.  Variation of Frequency vs Deck Stiffness, US 24 Bridge 
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8. CONTEMPORARY TIED ARCH BRIDGES 

8.1. GENERAL  

Many of the tied arch bridges recently designed and built follow the adage that 

necessity is the mother of all invention.  Where the need, in this case, is highlighted in the 

1978 FHWA technical memorandum (FHWA, 1978) cautioning owners to consider alternate 

bridge types due cracks developing in the non-redundant and fracture-critical steel tie-girders 

constructed prior to 1978.  To address this need, engineers have developed new tie-girder 

arrangements, new material for tie-girders and new hanger arrangements to produce a 

contemporary tied arch bridge that is unsusceptible to thru-fracture yet remains economical.  

However the ingenuity has not stopped there and today there are further advances in the 

design and construction of tied arch bridges to note.  Other advances include: alternate 

hanger arrangements, inclined arch ribs (i.e. basket-handle), freestanding arches, concrete tie 

girders and composite superstructures. 

8.2. INTERNAL REDUNDANCY  

The crux of the FHWA (1978) technical advisory concerning Tied Arch Bridges is 

the statement  “one of the most nonredundant structures relying entirely on the capacity of 

two tie girders to accommodate the total thrust imposed by the arch ribs”.  The remaining 

items noted in the advisory are addressed through improved hanger/tie girder connection 

details and improvements in the mill, rolling or welding process.  Petzold (2005) 

Improvements have been made to the design and details of tied arch bridges over the years to 

address and remove these older, faulty design details.  Hanger details are more robust and tie 

girders, perhaps the most non-redundant element of the bridge type, is designed with internal 

redundancy in a number of ways.  Tie girders are typically composed of closed members 

such as box girders or open members such as I-girders.  Over the years, in response to the 
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FHWA Technical Advisory, several derivatives of these arrangements have been suggested 

in order to address redundancy.  This requires internal redundancy, load path and structural 

redundancy.  These new developments are listed below. 

8.2.1 Internal Redundant Structural Steel.  Petzold (2005) groups the various 

alternates for the tie girders into closed and open arrangements.  Figures 8.1 and 8.2 show the 

closed arrangements in items 1, 2, 3, 7 and items 8, 9, 10, 11 and 12 respectively.  The 

remaining items of these Figures are the open arrangements, 4, 5, 6 and 13.  The 

effectiveness of any one of the suggested arrangements is largely dependent on meeting as 

many of the prescribed constraints of the application.  Drawing on the background of 

structural optimization, the constraints can be categorized as Fabrication, Design, and Codes 

for example.  Figure 8.3 shows the categories with some items vying for priority in future tie-

girder use.  This figure will be used to briefly evaluate the advantages and disadvantages of 

the tie girders.   

 

Figure 8.1.  Alternate Tie Girder Arrangements.   From Petzold (2005) 
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Figure 8.2.  Alternate Tie Girder Arrangements.   From Petzold (2005) 
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In Section 5, it was shown that the current tie girder arrangement for the City Island 

Bridge is acceptable for the 2012 AASHTO LRFD strength load case.  This will serve as the 

basis for comparison to the aforementioned newer tie girder arrangements.  The tie girder is 

shown in Figure 8.4.  It is comprised entirely of ASTM A588 steel having Fy = 50 ksi. 

From Figure 8.1 Arrangement 1 is the original, closed, welded plate box girder 

whereas Arrangement 2 is the closed, bolted plate box girder that is now more or less the 

norm for steel sections.  The bolted plate box girder is used on the Page Avenue Bridge and 

has the benefit of providing the same strength, stability, inspection access and internal 

redundancy as far as limiting crack growth.  With the bolted box girder, each plate is joined 

with angles or bent plates and bolted.  As a result, there is no continuity for a crack to 

propagate from plate to another.   In comparison to the welded box, the fabrication cost 

increased as did the durability and resilience, statics and stiffness.  The ease of inspection 

remains the same.  This comparison is tabulated in Table 8.1 for this and all arrangements.   

Girder Arrangement 3 is a hybrid of the box and single web plate girder.  Certainly 

the area and moment of inertia about the major axis remains the same but drawing in the web 

plates toward the centerline complicates fabrication and inspection.   

Girder Arrangement 4 combines two welded plate girders using bolts.  By inspection, 

one wonders if this arrangement provides the necessary level of redundancy.  If the tie girder 

requires the full depth of both members to resist dead and live moments (with axial tension) 

and one member is compromised due to a crack through the flange, how can the remaining 

member provide the requisite capacity?   Moreover, using the same plates as the City Island 

tie, the moment of inertia about the major axis is reduced by about 30% while the area stays 

about the same.  Lastly, pack rust is a real concern for a built-up member with a parallel and 
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horizontal joint exposed to the atmosphere.  For these reasons arrangement 4 is not a very 

attractive solution.   

 

 

Figure 8.4.  City Island Tie Girder Dimensions & Properties 

 

Girder Arrangement 5 turns the solution of arrangement 4 ninety degrees and places 

single plate girders side by side with a diaphragm plate between them for compliance.  This 

solution solves the lack of capacity in the event of a severe crack in one of the flanges.  

However it introduces another complexity.  In the event of one the girders disabled, the 

resulting load path must account for the eccentricity in the now single plate girder.  For 

durability this arrangement provides much open area for debris and moisture to collect and 
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weight and overall fabrication cost.   
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4’
-1

1”
 

1 3/8” x 39”
(Typ.)

13/16” x 118”
(Typ.)

A
g
 = 2.280 ft

2 

 
I

33
 = 34.33 ft

4
 



www.manaraa.com

130 
 

This single plate girder is very effective and efficient despite the added fabrication material 

and labor to bolt the sections together.  A single plate girder tie has been in use on the two 

Jefferson Barracks Bridges, spanning over 900 feet.  The open plate section is easy to inspect 

and maintain.   

The last item in Figure 8.1 is a welded box girder with interior bolted web plates for 

redundancy.  This arrangement employs, at the onset, an oft used retrofit to mitigate cracks or 

corrosion related section loss in plates.  The web area is doubled up but the stiffness isn’t 

increased greatly on the major axis.  This aids in maintaining the intended balance of moment 

in the arch rib and tie.  With the redundant plates added to the inside, pack-rust, so prevalent 

in built-up members, will not develop if the plates are properly bolted for sealing.  In the 

event of a disabling crack, a section encompassing the crack may be removed and a new 

bolted section spliced in.  The drawback is that the web plates have the greatest area and thus 

require an incredible number of bolts over the length.  This quickly raises the fabrication 

costs. 

Figure 8.2 begins with Alternate 8 which is plate girder within a box girder.  The new 

arrangement is obviously redundant and increases the cost of the material and fabrication.  

The stiffness is increased by over 70% and the area by 60%.  Thus this new redundant 

member will affect the distribution of moment between the tie and rib.  It is likely the most 

expensive alternate shown due to the added material.  It also poses limitations when 

inspecting the inside of the tie girder due to the resulting narrow openings.    

Alternates 9, 10, 11 and 12 are all box girder arrangements.  Alternate 9 is very 

similar to Alternate 4 and raises the same concerns and reservations.  Item 10 pairs two 

independent boxes, joined and bolted by the web plates.  The addition of the two interior web 
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plates adds a level of redundancy but leaves a question.  Will the flanges remain full effective 

if one of the exterior webs develops a severe, lengthy crack?  It seems the best way to ensure 

the flanges remain compliant with the remaining plates is to have an interior cover plate 

bolting all flanges.  If this were the case, then Alternate 10 would mostly resemble Alternate 

8.  Additionally, Alternate 10 has an extra web plate over that of Alternate 8.  Both 8 and 10 

share a lack of space for fabrication of internal diaphragms and inspection.  Alternate 11 and 

12 provide partial depth redundancy plates.  These plates are provided in critical areas of the 

tie girder where tension stress exists for live load.  This is a typical retrofit for existing two 

girder superstructure systems.  Figure 8.5 shows a typical partial plate redundancy retrofit in 

the Central US.   

 

 

Figure 8.5.  Partial Plate Redundancy Retrofit 

   

The last alternate, 13, shows a single welded plate girder option and supplementary 

web plates bolted to the central web plate.  Again, this alternate derives from many retrofits 

that have been performed over the years.  Like many of the other alternates, an increase in 

fabrication cost is necessary to provide the many bolt holes, install bolts, and test them for 

torque.  Yet, this option is open, easy to inspect and with the edges of the additional plates 

tucked into the flanges, pack rust will be less of a concern. 
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Providing tie girder internal redundancy can be achieved but requires understanding 

the relationship of a myriad of factors, see Figure 8.3, to produce a cost effective option.  

Among those factors it’s important to understand the role of tie girder flexural stiffness on 

the overall system to ensure the intended structural performance remains unabated.  It is also 

worth noting that a completely redundant tie girder is not necessary.  Given the requirements 

for bridge inspection, especially for fractural critical elements, cracks can be identified and 

monitored or repaired before a catastrophic event occurs.  A completely severed tie girder is 

an unusual and unlikely event given the inspection programs and diligence afforded to our 

largest infrastructure.  As a result it is possible that an arrangement providing partial 

redundancy is appropriate.  Such an application would provide for high strength plates having 

partial depth, by design, to prevent complete propagation through the section but permit 

inspectors, owners and engineers to develop a retrofit for the localized area.  Over the service 

life of the bridge this seems more economical than an initial, completely redundant element, 

which, in the end, may interfere with inspection and or retrofitting. 

Table 8.1 shows the relative material or effort involved in fabrication, design and 

inspection of alternates to the welded box tie-girder.  Obviously greater material and effort 

translate to increased cost.  In some cases, the values in the table may be counter-intuitive at 

first glance.  However after considering the process, such as fabrication, in its entirety the 

assessment is clear.  As an example, several of the bolted options are noted has having lower 

labor effort.  This may be counterintuitive since increasing the number of bolts, increases the 

number of holes to punch and ream and then draw-up with fit up bolts and finally finish bolt 

and proof with torque tests.  This effort must be compared to the welded option which 

includes pre-heating, special welding processes, distortion control procedures, multiple pass 

welding, and in a confined space. 
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Table 8.1.  Comparison of Tie Girder Alternates to Welded Box Tie Girder 

 Fabrication Design and Code 

Alt. 

Section 
Matl Cost Labor Cost 

Durability and 

Resilience 
Stiffness Inspection Statics 

2 H L H H S H 

3 H L L S L H 

4 H L L H H S 

5 H H S H S H 

6 H L H S H H 

7 H H S S S H 

8 H H S H L H 

9 H H L S L H 

10 H H L S L H 

11 H L H S S H 

12 H H H H L H 

13 H H H S H H 

H – Higher effort than original arrangement 

L – Lower effort than original arrangement 

S – Same effort as original arrangement 

 

8.2.2 High Performance Steel. Cassity, Serzan and McDonald (2003) 

demonstrates the benefits of high performance steel (HPS) when combined with internally tie 

girder arrangements.  The authors present contemporary features of the new US 20 Bridge 

over the Mississippi River at Dubuque, Iowa.  The bridge features a single span, 845 feet tied 
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arch span with a rise of 105 feet and arches on 56 feet centers.  The ratio of rise to span is 

1:8.  The arch rib is a welded box having dimensions four feet wide and seven feet deep.  The 

bolted HPS box tie girder varies in cross section from 2.5 feet wide at mid-span, tapering to 4 

feet wide at the end.  The tie girder has a constant depth of 7 feet.  HPS has the benefits of 

greater fracture toughness over conventional bridge steels and provides early onset brittle-

ductile transitioning which provides ductility at extreme temperatures. Lastly, as the span to 

rise ratio is low, the result is higher arch thrust and thus higher tension in the tie girder.  Use 

of the HPS 70W steel permitted engineers to maintain routine overall tie girder dimensions as 

well as plate thicknesses.  

8.2.3 Internal Redundant Concrete Tie Girder. Perhaps one of the most 

significant developments in tie girder design is the use of a pre-stressed concrete tie girder for 

internal redundancy.  Tie girders need not be comprised of structural steel; many tied arches 

have used concrete for both the arch rib and tie.  For the most part those were bridges of a 

bygone era having short spans that have been replaced by more efficient and durable slab on 

girder bridges.  Today concrete and post-tensioning has made their way in long span tied arch 

bridges.  Many engineers believe that the concrete tie girders are internally redundant and 

that with the introduction of post-tensioning cracking in the concrete can be eliminated and 

additional ducts provided for future tendons as necessary.   

The literature shows interest in long span tied arch bridges comprised of concrete 

elements.  Hall and Lawin (1985) produced an illustrative design for a 625 feet tied arch 

comprised of a monolithic concrete superstructure.  The width of the bridge, from centerline 

arch to centerline arch is 91 feet.  In this alternate, the bridge deck is integral with the arch tie 

girders.  The tension is developed through several post-tension tendons in the concrete tie-

girder.  The tie-girder for this alternate has a depth of 9 feet.  The internal redundancy of the 
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concrete tie-girder manifests in the number of post-tension ducts.  Should one tendon fail the 

tension force is designed to be distributed to the remaining tendons.  In many cases, 

additional empty ducts are provided should future tendons need to be added.  The monolithic 

concrete section also provides some degree of load path redundancy.  Because the 

superstructure in integral, the tie girders, deck and floorbeam, this unit shares load should one 

of the elements fail.  Figure 8.6 shows the cross section from the Hall and Lawin (1985) 

study (a) and the cross section for the US 24 Bridge (b).  From this figure we can see how the 

integral cross section (a) is connected and how the cross section acts as a unit to resist global 

tension of the tied arch.  The US 24 cross section (b) shows, in contrast, that the tie girders 

are not connected to the deck. 

 

Figure 8.6.  Alternate Bridge Cross Section from a. Hall and Lawin (1985). b. US 24 
Cross Section 

 

The recently constructed Hastings (Minnesota) Tied Arch Bridge carrying Trunk 

Highway 61 over the Mississippi River also employs a concrete tie girder.  This bridge has a 

span of 545 feet, and from arch to arch, a width of 104 feet.  The rise of the arch is 88 feet 

which gives a rise to span ratio of 1:6.  The design criteria for the project contained several 

potential alternate tie girder arrangements.  Figure 8.7 shows the concrete option with post 

a. b.
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tensioning.  The tie girder measures 8 feet deep and 6.5 feet wide.  For comparison, the 

flexural rigidity, EI, of the preliminary concrete (f’c = 4000 psi) tie girder, neglecting post-

tension, is 1.44 x 108 k-ft2 whereas a comparable steel welded box girder, from the City 

Island Bridge, is 1.44 x 108 k-ft2.  The majority of tied arch bridges, like the City Island 

Bridge and the remaining study bridges, are predicated on the stiff tie and slender arch.  To 

ensure a similar level of moment distribution the concrete tie girder should have a similar 

flexural rigidity as the steel option.  Figure 8.7 also shows that the tie girder acts 

independently of the superstructure, particularly the deck.  As such the distribution of forces 

for the Hastings Tied Arch is dependent on the stiffness of the arch rib and tie.  The 

preliminary design criteria and plan sheets were developed by the CH2M-Hill and Jacobs 

team.  The final design, and ultimately construction, of the Hastings Bridge followed the 

work by the Design Build Team (DBT) Ames-Lunda with Parsons as the lead engineer.  

Gastroni (2011) documents this effort more in depth and describes the additional measures 

used to achieve redundancy. 

 
 

 

 

 

 

 
Figure 8.7.  Concrete Tie Girder with Post Tensioning 
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Benefits that engineers and owners should consider for alternate tie-girders include: 

improvements to redundancy, maintain or improve force distribution, durability, level and 

ease of inspection, and improved construction parameters (shorter durations, lower costs, 

etc).  Conventional structural steel requires long lead times for fabrication and runs the risk of 

fit-up or assembly issues on site.  Conventional concrete forming is typically less costly 

provided falsework or form support is minimized.  Adding post-tensioning usually adds a 

subcontractor, and maybe special inspection, to project which increases cost, however the 

increase may be minimized depending a host of factors or alternates considered.  Engineers, 

owners and contractors, where permitted, should evaluate these methods and influencing 

factors together in a matrix where the alternates and factors can be weighted to attain the best 

alternate. 

8.3. COMPOSITE TIE GIRDERS 

In addition to the many possible tie girder arrangements the choice to make the tie 

girder composite with the bridge deck is another example of innovation that is becoming 

prevalent in the industry.  The Hastings, MN Bridge (Gastoni, 2011) and the new Dubuque, 

IA (Cassity, Serzan, and McDonald, 2003) both use a composite tie girder.  Over the years 

reasons for not making the tie girder composite with the bridge deck were mainly twofold.  

Engineers noted the additional and more complex analysis necessary for this composite 

action.  Concrete bridge decks typically have a service life of 40 years with rehabilitation 

likely required at 20 years.  As a result, for maintenance reasons, owners prefer the deck to 

remain independent so that it may be removed in part or in full without compromising the 

structures performance.  Today advances in technology reduce both of those concerns.  

Engineers now engage in complex analysis routinely using structural analysis software and 

computational power unheard of by engineers 40 years ago.  Similarly, bridges decks 
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performance has increased thereby reducing concerns of completely removing major bridge 

decks.  With concerns allayed new tied arch designs take advantage of the bridge deck 

resisting global tension and reducing the load on the tie girder.  More importantly, including 

the deck in resisting the global tension provides an alternate load path for each of the tie 

girders as they are now connected by the deck.   

When considering a composite tie-girder/bridge deck, engineers must consider that 

the concrete bridge deck must be continuous from end to end of the tied arch span.  If relief 

joints are present, as with conventional design and construction, the benefit is lost.  With the 

composite behavior, additional global live load stresses must be evaluated in the deck and 

measures taken to ensure the stresses remain below the required maximums.  Alternately the 

deck can be post-tensioned to counter the tension stresses.  Adding post-tensioning has the 

advantage of actively eliminating cracks or maintaining an acceptable crack width.  A 

disadvantage is removing and replacing partial deck sections if necessary.   

8.4. ALTERNATE CABLE ARRANGEMENTS  

In Section 2, it was noted that there are three dominant hanger arrangements: the 

Langer System, comprised of vertical hangers, the Nielson System, using inclined hangers 

and the Network System, comprised of inclined hangers crossing multiple times.  Further it 

was noted that many of the tied arches designed and constructed in North America in the 20th 

century are comprised of the Langer system with stiff tie-girders.  Starting in northern Europe 

over 30 years ago the application of the Network Tied Arch Bridge became a viable alternate 

in the mid 2000s with the design and construction of the I-195 Bridge over the Providence 

River in Providence, Rhode Island followed by the Blennerhassett Bridge over the Ohio 

River in Blennerhassett, West Virginia.  See Figure 8.8.  Numerous other network tied arches 

followed in Kansas-Missouri border, north Texas and Little Rock, Arkansas. 
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Figure 8.8.  a.  Providence River Bridge, b.  Blennerhassett Bridge.  Photos from Tveit (2006) 

 

The original network tied arch, proposed by Per Tveit (2011) is based on the 

increased number of inclined hangers and connections such that flexure is minimized in the 

arch rib and tie girder, which then acts more like the bowstring arch bridges.  Many of the 

early network tied arches designed and constructed in Norway and northern Europe have 

only minor structural steel in the tie girder and depend on concrete sections with partial or 

full post-tensioning.  The concrete bridge deck, with post-tensioned concrete edge girders, 

becomes the primary tension element for the network tied arch.  As a result Tveit (2011) is 

able to show a large reduction in structural steel weight compared with convention tied 

arches.  Tveit (2006) demonstrates this through a case study for a redesign of the tied arch at 

Straubing, Germany (Langer System) using the network tied arch.  Except for the Providence 

Bridge, the numerous network tied arches designed and built in the USA do not take full 

advantage of the shallow depth, concrete deck with edge girders, See Figure 8.9, as the sole 

tension tie.  Rather, the network hanger system has become a tool to be used with other 

means to achieve a more redundant system. 

a b
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Figure 8.9.  Network Tied Arch - Tie/Chord European Construction.  Dimensions in cm for 
thickness and m for width/height, Figure taken from Tveit (2006) 

 

Another characteristic of the original network tied arch is the circular or elliptical rib 

form.  For vertical hangers, the parabola is the more optimal form.     

The network hanger system does provide benefits over redundancy in the tie-girder.  

The combination of inclined hangers and overall increase in number of hanger reduces the 

flexural demand in the arch rib and provides inherent out-of-plane stiffness.  This combined 

with the wind bracing typical of major through bridges increases the arch rib buckling 

capacity.  These benefits combined could result in smaller arch rib members.   

8.5. ARCH ARRANGEMENT 

Along with the tie girder, the arch rib has also seen a variety of shapes and 

arrangements over the years.  The arch ribs for bridges in this study are welded rectangular 

box members.  Variations include pipes, H-sections (I shapes turned on their sides), 

trapezoidal welded box, welded plates to form a triangular section, and concrete filled pipe.  

China has been particularly active in research and application of the concrete filled steel tube 

(CFST) bridges.  The Damen Avenue Bridge in Chicago, Illinois spans 308 feet over the 
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Chicago River used 4 feet diameter pipe for the arch ribs.  The pipe has a one inch thickness 

throughout the length of the rib.  The pipe was bent using heat induction techniques.  The 

bridge Damen Street Bridge is a true arch bridge rather than a tied arch bridge.  The Damen 

Street Bridge also employs free-standing arches – no wind bracing between the ribs.  To help 

achieve this the lower 24 feet of the arch ribs are filled with concrete to provide the necessary 

lateral capacity. 

Along with the Damen Street Bridge, the George Washington Carver Bridge over the 

Raccoon River in Des Moines, Iowa also uses free-standing arch ribs.  The bridge is a tied 

arch with vertical hangers, a span of 280 feet and width of 110 feet and an arch rise of 56 

feet.  The rise to span ratio is 1:5.  The arch ribs for this bridge are welded trapezoidal boxes 

and the tie girders are concrete with longitudinal post-tensioning.  The concrete tie-girder and 

free standing arches are both shared by the Hastings, Minnesota TH 61 Tied Arch.  This 

bridge described in Section 8.2.3 also has free-standing arches and the ribs are welded plate 

trapezoidal boxes as well.  The span of the Hastings bridge is 265 feet longer than the 

Raccoon River Bridge.  However, the Raccoon River bridge has vertical hangers while the 

Hastings Bridge has a network system of hangers. 
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9. CONSTRUCTION 

  
The principle methods of constructing arch bridges are generally applicable to a 

number of structures, especially those with single spans.  These methods include (1) 

Cantilever method, (2) Shored Construction, (3) Off-Site Construction and (4) Vertical-

Horiztonal Construction.  The contractor is responsible for the decision to use any one these 

methods and he must consider a myriad of risk factors to ensure the safe and economical 

erection.  The design engineer responsible for the final arch arrangement works with the 

contractor and owner to ensure the means and methods of the contractor do not conflict with 

the structural design intent of any one element of the arch or the arch as a whole.  The 

following sections discuss the general erection procedures.  

9.1. CANTILEVER CONSTRUCTION 

This method can be used in many locations and for differing types of arch bridges.  It 

is characterized by the use of temporary towers referred to as “tie-back towers”.  As the arch 

rib construction progresses outward along the longitudinal bridge axis, cables are affixed to 

the erected arch rib segments to maintain the appropriate vertical profile.  The cables 

supporting the segments are directed up and away from the arch rib back over the tie-back 

tower and fixed to a ground level support away from the bridge.  As erection progresses new 

cables are added to the newer arch segments.  See Figures 9.1 and 9.2.  With the arch rib 

completed, the hangers can be erected and connected to the arch rib followed by the arch tie 

girder or just the deck if no tie girder is used.  Hague and Blakemore (2004) and Blakemore 

and McCombs (2012) provide recent examples of an arch bridge constructed with cantilever 

construction.  This method typically requires the use of a conventional water-base crane to 

erect the structural steel.  In some case, spanning gorges for example, a high-line can be used 

to transport material from the end of the bridge to the beginning and vice versa. 
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Figure 9.1.  Example of Cantilevered Construction.  Image from Hague and 
Blakemore (2004) 

  

 

Figure 9.2.  Tie-Backs used on Amelia Earhart Bridge.   Image from Blakemore and 
McCombs (2012) 

 

9.2. SHORED CONSTRUCTION 

As the name implies this construction method is characterized by shoring towers 

strategically located within and under the span to support the bridge.  The shoring towers 

Typical Tie-Backs 

Tie-Backs



www.manaraa.com

144 
 

may be set to support the tie girder or the arch rib or both.  Use of this method is limited to 

sites where the height of the shoring towers is relatively short and do not impede navigation 

in a waterway, as may be required.  It is also important to consider the locations for shoring.  

Where practical shoring should be placed under compression members but this is not always 

easy to work out pending the logistics of river traffic, subsurface conditions, erection, and 

access.  In those cases where shoring must be placed under hangers, the hangers will need to 

be shored using temporary members.  Niemietz and Bauer (1999), See Figure 9.3, describe a 

bridge over the Mississippi River erected with shored construction and subject restrictions 

due to navigation on the river.  This method requires conventional water-based cranes to 

erect the structural steel for the bridge. 

 

 

Figure 9.3.  Single Span Construction using Shoring in the River.   Image from Niemietz and 
Bauer (1999) 

9.3. OFF-SITE CONSTRUCTION 

Off-site construction refers to many things in the construction industry and the widely 

accepted meaning entails the fabrication and delivery of any necessary element to the actual 
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site of the betterment.  For the purpose of this study the term is broadened to include 

betterments fabricated, erected, or constructed merely off alignment.  Where, in this case, 

alignment refers to the project or bridge centerline and where the majority of the construction 

activity takes place.  In sense the work is likely to be close-by, in or out of the project right-

of-way, just as long as it’s off the alignment.  There are two main categories of off-site 

construction, high level and low level.  High level off-site construction refers to bridges that 

are essentially erected at or about the same elevation they will be in their final positions and 

then transported in that high-level condition.  This is a considerable risk and requires much 

planning and bracing to ensure the stability of the bridge at height.  The second category has 

considerably less risk and is termed low-level off-site construction.  This method involves 

erecting the bridge off-site just above the ground and transported in this low position to the 

final location.  Once at the final location, the bridge is lifted using high-strength strand-jacks 

to hoist the bridge into the final position.  Off-site construction is gaining in popularity 

especially when combined with certain construction methods such as self-propelled-modular-

travelers or SPMTs.  SPMTs permit modular construction to take place off-site and be 

transported to their final location in the project.  SPMT use is spectacularly highlighted in the 

article by Furrer and Hasbrouck (2011).  The bridge presented by Furrer and Hasbrougk 

(2011) was erected on the bank of the Mississippi River at Hastings, MN, (low-level) 

transported onto barges via SPMTs and then floated upriver to final location where it was 

hoisted into place as single 545 feet unit.  Ini contrast, the Rte 364 Bridge in West St. Louis 

County over the Missouri River is an example of high-level erection.  It is also worth noting 

that many high- and low-level bridge transports are floated with the aid of tugboats.  This is 

not the case for the Rte 364 Bridge.  On Rte 364, the barges floating the bridge have large 

winch motors on their forward port and starboard positions.  The winch lines are anchored to 

10,000 pound Naval anchors that are placed well upstream of the bridge to provide ample 
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room to winch the bridge into place.  See Figure 9.6.  In the best case, bridges are floated 

upstream for better control.  Both methods are shown in the Figures 9.4 and 9.5 below. 

 

 

Figure 9.4.  Low-Level Transport. Hasting Bridge at the Mississippi River, Furrer and 
Hasbrouck (2011) 

 

Figure 9.5.  High-level Bridge Transport, Rte 364 at Missouri River.  Photo Courtesy 
of Jacobs 
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Figure 9.6.  Schematic showing transport of Rte 364 Bridge. From temporary  position a) to 
directly downstream of final position b).   Note four anchor points in bottom of schematic.  

Barges and bridge were winched into place 

 

9.4. VERTICAL-HORIZONTAL CONSTRUCTION 

Fu and Wang (2015) present two interesting methods of arch construction, the 

vertical and horizontal rotation methods.  These two methods are emphasized in the Yajisha 

Bridge, a continuous half-thru tied arch, over the Pearl River located in Guangzhou, 

Guangdong, China.  The arch rib of a continuous, half thru arch will extend down below the 

roadway to a founding abutment before extending out away from the main span to form the 

under support for the exterior bridge.  As a result, the contractor can elect to use the 

permanent foundation numerous ways to facilitate erecting the arch rib.  The contractor may 

elect to erect the arch rib on the proposed bridge longitudinal alignment which means 

working in and over the waterway.  Alternately the contractor may elect to erect the arch rib 

over land adjacent to the waterway and at an right angle to longitudinal bridge axis.  The 

latter method allows the contractor use conventional, land-based equipment, while 

eliminating or reducing risks associated with working over water.  In this example, the 

a) b) 
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contractor built one half of the arch span over land on each bank, normal to the longitudinal 

axis of the waterway and much closer to the ground.  The contractor constructed the 

foundation abutment first to support a temporary vertical tower, a tie-back, to re-direct 

erection cables forward and back of the tower to hold the arch in position.  The key for the 

vertical rotation method is to found the tie-back tower on a pivot along with the bottom of the 

arch rib on a steel track/beam encircling the tie-back.  Thus when the arch is constructed so 

that it will reach out over the waterway, it can be raised vertically (about a horizontal axis) 

and rotated, about the vertical axis of the tie-back tower, to align with the intended 

longitudinal axis of the bridge.  Once the rotation is completed the mid-span connection can 

be made over water and from this point forward all bridge construction can proceed from the 

arch rib as a platform.  Throughout the reference several photos of construction are provided 

to clarify the horizontal and vertical rotation methods and among these photos more routine 

methods of arch erection, such as with falsework towers, is also seen. 

Fu and Wang (2015) provide details for vertical/horizontal construction using the 

Yajisha Bridge.  See Figure 9.7.  The Yajisha Bridge is a continuous half-thru tied arch, over 

the Pearl River located in Guangzhou, Guangdong, China.   

 

Figure 9.7.  Superstructure Rotation Method.   Image from Zhang, El-Diraby (2006) 
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10. RESULTS 

10.1. STATIC RESULTS 

Characteristics of the four tied arch structures examined as part of this study were 

developed and reported for application to preliminary design of future tied arches.  The 

characteristic features include but are not limited to rise to span ratios, weight per square foot 

of bridge footprint, weight of structural steel, including the most salient components such as 

the arch rib and arch tie, relative to total dead load weight of the bridges, total live load 

relative to the total structure load, arch rib and arch tie girder dimensions.  Hanger 

arrangement, spacing and loads, both dead and live load are examined as well.  The results of 

this synthesis for tied arch bridge arrangement using ASD is presented as are the results of 

similar features designed using the latest LRFD code.  

The tied arch characterisitics are captured in Tables 10.1 through 10.5.   

 
Table 10.1.  Bridge Rise to Span Properties 

Bridge Span 
(feet) 

Rise 
(feet) 

Panels Rise/Span Rise to Span 
Ratio 

Jefferson 

Barracks 
910 182 18 0.200 1:5 

City Island 670 132 16 0.197 1:5.10 

Page 

Avenue 
617 124 16 0.201 1:4.97 

Tennessee 

River 

535.

33 
88.88 14 0.166 1:6 
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Based on our review of the literature we expect to see efficient and economical arches 

to be fairly shallow to ensure arching action thus producing more thrust at the arch knuckle 

and to minimize arch rib and hanger length.  The bridges of this study fall within a rise to 

span ratio range of 1:5 to 1:6 as recommended meeting the aforementioned objectvies.  The 

Page Avenue Bridge falls just outside this expectation, on the shallower side.  Still the Page 

Avenue bridge rise to span remains very close to the anticipated range.   

 

Table 10.2.  Bridge Rib and Tie Properties 

Bridge Itie  
 

Irib 

Ratio Itie:Irib Ratio Atie:Arib 

Jefferson 

Barracks 

2,351,846 in4 

270,787 in4 
8.7 1.23 

City Island 
711,800 in4 

170,900 in4 
4.2 0.998 

Page Avenue 
762,985 in4 

277,074 in4 
2.8 0.923 

Tennessee 

River 

381,131 in4 

36,387 in4 
10.5 1.20 

 

Table 10.2 demonstrates the strong tie girder concept for the Jefferseon Barracks and 

Tennessee River Bridges and though the City Island and Page Avenue Bridges have much 

smaller Itie to Irib ratios the tie girder, for these cases, will have about 3 to 5 times the 

moment of the rib.  Moreover, though the arch tie girder is much deeper than the arch rib, to 

attain such a high second moment of interia, the areas for both the arch tie and arch rib 

remain very similar, within 20%. 
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Table 10.3 provides total dead load per bridge area, which is always of interest to the 

engineer for preliminary design of the arch, substructure and estimated construction cost.  

The steel and concrete are separated in later sections.  Finally, the table shows the ratio of I/A 

for the arch rib relative to the bridge span. 

 

Table 10.3.  Bridge Weights 

Bridge 
Span 
(feet) 

Width 
(feet) 

Dead Load 
 Plans (kips) 

Weight 
(psf) 

Dead Load 
SAP2000 

(kips) 
I/A 

Jefferson 

Barracks 
910 62.0 17,568 311.0 17,136 769 

City Island 670 79.0 - 244.0 12,924 464 

Page Avenue 617 90.88 14,848 264.0 14,800 700 

Tennessee River 535.33 46.00 6,256 254.0 6,016 218 

 

 
Table 10.4.  Bridge Arch Member Weight to Total Weight 

Bridge 
Span 
(feet) 

Width 
(feet) 

Weight 
(kips) 

 
Total Dead 
Load (kips) 

 

% 

Jefferson 

Barracks 
910 62.0 2,661 17,136 16 

City Island 670 79.0 1,605 12,924 12 

Page Avenue 617 90.88 2,172 14,800 15 

Tennessee River 535.33 46.00 696 6,016 12 
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Table 10.5.  Bridge Tie Girder Weight to Total Weight 

Bridge 
Span 
(feet) 

Width 
(feet) 

Weight 
(kips) 

Total Dead 
Load (kips) 

% 

Jefferson 

Barracks 
910 62.0 3,134 17,136 18 

City Island 670 79.0 1,400 12,924 11 

Page Avenue 617 90.88 1,767 14,800 12 

Tennessee River 535.33 46.00 807 6,016 13 

 

Tables 10.4 and 10.5 show the weights for the arch rib and tie respectively for all of 

the study bridges.  In each case, the arch rib ranges from 12% to 16% of the total dead load 

while the arch tie ranges from 11% to 18% of the total dead load.  Combined, the arch and tie 

range from 23% to 34%.  The concrete bridge deck typically accounts for 30% of the total 

dead load leaving a range of 36% to 47% for the floorsystem (floorbeams, stringers and 

stringer bracing) and all of the upper and lower wind bracing. 

10.1.1 Static Dead Load Results.  Figure 10.1 presents the normalized dead load 

(FEA to Plans) axial load for the major elements of the Tied Arch Bridge.  Earlier it was 

explained that the FEA model was calibrated to the dead loads on the plans.  To that end, the 

figure shows good correlation for all major components falling within ±5% of the plan dead 

load.  As noted earlier this load does not include ancillary structures such as the inspection 

walkway or any changes in the design plans capture in the “as-built” plans. 
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Figure 10.1.  Normalized Axial Dead Load for all Study Bridges 

 
 
Figure 10.2 demonstrates the relationship of the ratio of second moments of inertia 

for the rib to tie and the resulting moment demands for the rib to tie.  This figure graphically 

demonstrates the data in Table 6.10.  This figure confirms the performance of the rib to tie 

for a range of rigidities (assuming Young’s modulus to be constant).  For the case where the 

rib has many times the rigidity of the tie girder, the moment in the rib can be expected to be 4 

to 8 times that of the tie girder.  At this point, the rib behaves more as a true arch.  

Conversley, when the rib is many times stiffer than the rib, the tie girder behaves more as a 

beam and the arch becomes functionless.   
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Figure 10.2.  Relationship of Arch Rib Moment to Arch Tie Moment 

 

10.1.2 Static Live Load Results.   The following graph compares the live load for 

the FEA model to the information tablulated on the design plans; the pre-LRFD live load of 

the plan sets to that of the current live load in the AASHTO LRFD code.  Figure 10.3 shows 

the normalized axial load (FEA to plan value) for each of the main Tied Arch Bridge 

element.  A good correlation would have the values close to unity.  However, there is much 

to note to provide a context in which to view these results.  The application of live load is not 

as straight forward and consistent as one would like from engineer to engineer and office to 

office.  That many of these plans are 40 years old adds generations to the mix as well.  The 

AASHTO code, whether from 1965 to present, is clear on loading but provides some 

interpretation as to how many lanes are placed on a bridge.  The code makes clear that lanes 

are to be 12 feet wide and within that distance a vehicle lane is 10 feet with the distance from 

wheel line to wheel line given at 6 feet.  It further makes clear no partial lanes are to be used.  

However, when a fraction of a lane results it is the practice of some to round up and reduce 

the 12 feet lane.  This obviously results in more live load on a structure than the code actually 
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specifies.  For long span structures, the lane load, full or patch, will typically control the main 

members such as the rib, tie girder, hangers, and bearings.  This is a straight-forward analysis 

especially for the computer-aided analysis.  Yet most of these bridges were analyzed and 

designed at a time when computers were few and of limited capacity in the office.  So 

engineers calculated a distribution factor for each of the planar arches by placing as many 

vehicles as possible between the roadway barriers but offset to load one arch greater.  Many 

times the number of vehicles in this analysis was more conservative.  As a result this 

comparison captures a true three dimensional stiffness analysis using code defined vehicles 

and surface influence lines to a conservative and subjective two dimensional analysis.  

Another source for difference is in the multiple presence factor which accounts for the 

probability of vehicles being present at the same location in other lanes.  The current LRFC 

code has smaller values for greater lanes loaded than the HS20 model uses.  Other possible 

differences include accounting for construction tolerances and including eccentric 

connections or other secondary effects that will add to the moment effect.  One difference is 

the combination of values reported.  Not all maximums occur at the same time and so there is 

a question of whether or not the maximum axial load case also produced a maximum 

moment.  Without the calculations it’s difficult to know if all maximums are listed or not.  

Lastly, not all values reported the impact load separately making it difficult to know the exact 

value used.  However, for bridges of the spans reported impact is generally as low as 5%. 

With this in mind the values for the axial load show for each of the main members to 

be within ±25%.  Figure 10.4 also shows a similar result for the moments in the arch rib and 

tie.   

Figures 10.5 and 10.6 show a comparison between the normalized axial load and 

strong axis moment (HS20 to HL93).   
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Figure 10.3.  Normalized Axial Live Load for all Study Bridges 
 
 

 

Figure 10.4.  Normalized Live Load Moment for all Study Bridges 

 

The HL 93 value is generated using the FEA models.  Since the HL93 vehicle is a 

heavier load model than the older HS20 it was thought the HL93 would result in larger 

reactions (moments, shears and reactions).  This is the case for much of the elements under 
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axial load but not necessarily true for the moment in the arch rib and tie.  The reader is 

reminded that the Page Avenue Bridge is designed using a modified HS20 vehicle model 

such that all magnitudes are increased by a factor of 1.25.  It is also known that the Page 

Avenue did include additional moment to account for unintential eccentricity due to 

construction. 

 

 

Figure 10.5.  Normalized Axial Live Load (Plans) to FEA - LRFD 

 

To summarize the static dead and live load portion, we see that there is sufficient 

support that all of the mass and stiffness is accounted for.  The stiffness as compared via the 

deflections match those of the plans for the US 24 Bridge over the Tennessee River and the 

work done by Ren et al (2004).  Though the live load differences are greater than preferred 

we know that today’s computational is not only reasonable but free from much of the 

subjectiveness in the process generations ago.   
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Figure 10.6.  Normalized Live Load Moment, HS20 to HL93 

 

Lastly, we see that using LRFD will not drive up cost with larger members.  For the 

benefit of greater reliability and consistency in the LRFD the overall preliminary result is 

very similar to those from earlier codes. 

10.2. DYNAMIC RESULTS 

Dynamic characteristics of the four tied arch structures examined as part of this study 

were developed and reported for application to preliminary design and potential for structural 

health monitoring of future tied arches.  Two models were developed, a lower bound stiffness 

model and an upper bound stiffness model.  The mass remained the same for both models.  

The characteristic features include frequency and mode shapes.   

Mass participation ranges from 43% to 92% for the lower bound models and for the 

upper bound stiffness model a range of 42% to 89% is noted.   
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Select frequencies, periods, and mode shapes for the four bridges, for both stiffness 

models, are developed.  Thirty modes were assessed in the FEA models and an arbitrary cut 

off of 1% mass participation was used to collect the tabulated data.  The data shows the tied 

arch bridges to be characterized by low, relatively close frequencies.  The shorter bridge, US 

24 over the Tennessee River, ranges from 0.514-4.94 Hz for the lower bound stiffness and 

0.589-2.922 Hz for the upper bound stiffness.  The City Island and Page Avenue Bridges, 

having similar features have frequencies of 0.277-3.66 Hz for the lower bound and 0.283-

3.655 Hz for the upper bound stiffness.  The longer bridge, Jefferson Barracks, has a lower 

bound range from 0.313-3.463 Hz and 0.327-3.037 Hz for the upper bound.  The four bridges 

share similar mode shapes as shown in the aforementioned tables.  However the first two 

mode shapes are typically asymmetric full sinuous for the first vertical/longitudinal mode or 

symmetric half sinuous for the first transverse mode.  

Table 10.6 shows a comparison of the modal parameters for the I-24 Bridge over the 

Tennessee River from this study to that of Ren et al (2004). 

 
Table 10.6.  US 24 Bridge over the Tennessee River Modal Comparison 

Mode 
FEA Model+ 

Hz 

Ren et al (2004) 

Hz 

First Vertical 0.589 0.561 

Second Vertical 1.148 1.149 

Third Vertical 1.565 1.749 

First Transverse 0.672 0.717 

Second Transverse 0.888 1.557 

+ - Upper Bound Stiffness  
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The hanger dynamic parameters are reported for modes 1 to 3 respectively.  The 

range of frequencies for the hangers, from middle to end hanger is 0.6-24 Hz in mode 1.  For 

mode 2, the range is 3-48 Hz and for mode 3, 3-72 Hz for the middle to end hanger 

respectively.   

Sources of excitation include traffic, wind and earthquake.  Traffic related vibrations 

are determined to range from 1.7-2.3 Hz for a velocity of 55 mph and a range from 2-2.7 Hz 

for a vehicle velocity of 70 mph.  Wind induced vibrations may become problematic for 

vertical bending modes having a frequency less than 1 Hz.  Lastly, it is shown that vibrations 

due to ground motions are a concern since most frequency content of ground motion is low 

frequency similar to the bridges.  Typically this motion will not last long enough to set a 

major bridge into motion let alone resonance.  However for the Central US it is shown that 

large magnitude events are capbable of providing longer duration strong (low frequency) 

ground motion which can have a more pronounced effect on the structure. As a result, the 

dynamic parameters of the tied arch bridge will prove valuable to bridge planners and 

designers.   

10.3. CONCLUSIONS 

Tied Arch Bridges are a cost effective, aesthetic long span solution for major river 

crossings and are experiencing resurgence in popularity with owners and communities.  This 

is especially true as details that once plagued these bridges are eliminated and newer, more 

robust and redundant arrangments are developed.  Understanding the complex dynamics of a 

structure begin with a good understanding of the static performance of the structure.  With a 

better understanding of the base tied arch, variations may be added with greater confidence 
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that dynamic effects of those variations can be understood as well.  To that end this work 

demonstrates the characteristics of tied arch bridges for static and dynamic loads. 

Four major tied arch bridges having different spans, widths, rise to span ratios, and 

wind bracing are examined to produce the most characteristic features.  These features will 

aide bridge planners and designers to have an idea for the type and size of main bridge 

featuers and elements.  These will also aide in more accurately assessing the anticipated 

construction costs. 

Finite element models of the four bridges were developed and explained with the 

results shown demonstrating good correlation to both dead and live loads.  The FEM were 

then used to develop the dynamic parameters for each of the bridges.  Those parameters are 

tabulated and compared to various likely sources of vibration.   

The four bridges of this study were originally designed using either Allowable Stress 

Design (ASD) or Load Factor Design (LFD).  Preliminary design was developed for the 

current AASHTO code to compare the resulting cross-section with that of the original plans.  

It was determined that the current member type and sizes would provide a good start for final 

design.  Thus, only minor changes to the overall bridge features and characteristics are 

expected over the original work. 

The work demonstrates the most recent advances in tied arch bridge design, with a 

focus on making the tie girder less redundant while fulfilling the original design intent of a 

strong tie girder – slender arch rib concept.  Bridge decks composite with the tie girder are 

examined as are the newest hanger arrangments, network hangers.   

The report also discusses structural health monitoring with the possibility of using 

modal parameters for assessing the health of tied arch bridges.   
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While not all of these topics are discussed indepth, the topics covered do provide a 

strong foundation for additional or future work.  

10.4. FUTURE WORK   

Additional work to consider for the topic of Tied Arch Bridges is listed below: 

Redundancy Study – With the arch tie-girder identified as a non-redundant, fracture 

critical member, a study to determine the behavior of the bridge as a whole post-fracture of a 

hanger or element of the tie girder.  The structure is inherently indeterminate as are cable 

stayed bridges.  Computational work on cable stayed bridges has shown certain elements 

such as the floorbeams not to be non-redundant and not fracture critical.  This designation has 

broad impacts on inspection protocols and reducing such effort can permit allocating needed 

resources to other needs. 

Structural Health Monitoring – With several tied arches in the central region, field 

data acquisition for these bridges could provide valuable information in providing physical 

evidence to compare with the dynamic data herein.  In addition, more analytic work can be 

done to assess what the dynamic response of these structures is to fracture of a key element.  

The result of this study demonstrate the frequency range for the bridge overall and some 

elements.  As a result we understand that an assessment method based on the flexibility 

method may be more appropriate and that methods used to capture the dynamic parameters 

will need to address ambient vibrations and perhaps use those vibrations to capture the 

necessary dynamic properties.  The results of such a study could provide insight to the 

anticipated response of in service bridges. 

Revised Member Details – The work performed can be extended to include the 

response of the study bridges to variable tie-girder cross sections.  Such work would involve 
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including more detailed substructured FEM of areas of interest using loading from the larger, 

less refined global model.  This would provide the industry with insight to how well these, 

largely untried, details for redundancy will work. 

Similar to this work, a study of the characteristics of the newer network tied arches is 

suggested and could include a comparison to the tied arches of this report to highlight the 

benefits of the newer, contemporary work.  
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APPENDIX A 

A.  ANALYSIS OUTPUT FOR CITY ISLAND BRIDGE 
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Section 1 General Load Input Information 

Dead Load 

Table:  Case - Static 1 - Load Assignments 

Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 

    

DEAD Load pattern DEAD 1. 

PDELTA Load pattern DEAD 1. 

 

 

Table:  Case - Static 2 - Nonlinear Load Application 

Table:  Case - Static 2 - Nonlinear Load Application 

Case LoadApp MonitorDOF MonitorJt 

    

DEAD Full Load U1 124 

PDELTA Full Load U1 124 

 

 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Case Unloading GeoNonLin ResultsSave MaxTotal MaxNull 

      

DEAD Unload Entire None Final State 200 50 

PDELTA Unload Entire Large Displ Final State 200 50 

 

 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Case MaxIterCS MaxIterNR ItConvTol UseEvStep EvLumpTol LSPerIter 

       

DEAD 10 40 1.0000E-04 Yes 0.01 20 

PDELTA 10 40 1.0000E-04 Yes 0.01 20 

 

 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Case LSTol LSStepFact StageSave StageMinIns 

     

DEAD 0.1 1.618   

PDELTA 0.1 1.618   

 

 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Case StageMinTD FrameTC FrameHinge CableTC LinkTC LinkOther 

       

DEAD  Yes Yes Yes Yes Yes 

PDELTA  Yes Yes Yes Yes Yes 
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Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TimeDepMat TFMaxIter TFTol TFAccelFact TFNoStop 

      

DEAD  10 0.01 1. No 

PDELTA  10 0.01 1. No 

 

 

Live Load 

Table:  Case - Moving Load 1 - Lane Assignments, Part 1 of 2 

Table:  Case - Moving Load 1 - Lane Assignments, Part 1 of 2 

Case AssignNum VehClass ScaleFactor MinLoaded MaxLoaded 

      

LIVELOAD 1 HS20LOADING 1. 1 4 

 

 

Table:  Case - Moving Load 1 - Lane Assignments, Part 2 of 2 

Table:  Case - Moving Load 1 - Lane Assignments, Part 2 of 2 

Case AssignNum NumLanes 

   

LIVELOAD 1 6 

 

 

Table:  Case - Moving Load 2 - Lanes Loaded 

Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 

   

LIVELOAD 1 LTLANE1 

LIVELOAD 1 LTLANE1C 

LIVELOAD 1 LTLANE2 

LIVELOAD 1 RGTLANE1 

LIVELOAD 1 RGTLANE1C 

LIVELOAD 1 RGTLANE2 

 

 

Table:  Case - Moving Load 3 - MultiLane Factors 

Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLanes ScaleFactor 

   

LIVELOAD 1 1. 

LIVELOAD 2 1. 

LIVELOAD 3 0.9 

LIVELOAD 4 0.75 

LIVELOAD 5 0.75 

LIVELOAD 6 0.75 

LIVELOAD 7 0.75 

LIVELOAD 8 0.75 

LIVELOAD 9 0.75 

LIVELOAD 10 0.75 

LIVELOAD 11 0.75 

LIVELOAD 12 0.75 
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Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLanes ScaleFactor 

   

LIVELOAD 13 0.75 

LIVELOAD 14 0.75 

LIVELOAD 15 0.75 

LIVELOAD 16 0.75 

LIVELOAD 17 0.75 

LIVELOAD 18 0.75 

LIVELOAD 19 0.75 

LIVELOAD 20 0.75 

LIVELOAD 21 0.75 

LIVELOAD 22 0.75 

LIVELOAD 23 0.75 

LIVELOAD 24 0.75 

LIVELOAD 25 0.75 

LIVELOAD 26 0.75 

LIVELOAD 27 0.75 

LIVELOAD 28 0.75 

LIVELOAD 29 0.75 

LIVELOAD 30 0.75 

LIVELOAD 31 0.75 

LIVELOAD 32 0.75 

LIVELOAD 33 0.75 

LIVELOAD 34 0.75 

LIVELOAD 35 0.75 

LIVELOAD 36 0.75 

LIVELOAD 37 0.75 

LIVELOAD 38 0.75 

LIVELOAD 39 0.75 

LIVELOAD 40 0.75 

LIVELOAD 41 0.75 

 

 

Modal Analysis 

Table:  Case - Modal 1 - General, Part 1 of 2 

Table:  Case - Modal 1 - General, Part 1 of 2 

Case ModeType MaxNumModes MinNumModes EigenShift EigenCutoff EigenTol 

    Cyc/sec Cyc/sec  

MODAL Eigen 30 1 0.0000E+00 0.0000E+00 1.0000E-09 

 

 

Table:  Case - Modal 1 - General, Part 2 of 2 

Table:  Case - Modal 1 - General, Part 2 of 2 

Case AutoShift 

  

MODAL Yes 
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Structure Frame Member Imput 

Table:  Frame Section Properties 01 - General, Part 1 of 7 

Table:  Frame Section Properties 01 - General, Part 1 of 7 

SectionName Material Shape t3 t2 tf 

   ft ft ft 

ARL0R3 A992Fy50 SD Section    

ARR3R5 A992Fy50 SD Section    

ARR5R11 A992Fy50 SD Section    

Cable ASTM A586G General 1. 1.  

ENDFB A992Fy50 I/Wide Flange 8.8333 1.5 0.0833 

INTFB A992Fy50 I/Wide Flange 9. 1.6667 0.1667 

LBBL0L2 A992Fy50 SD Section    

LBBL2L7 A992Fy50 SD Section    

LBTALL A992Fy50 SD Section    

PBEAM 3500psi Rectangular 9.5 7.5  

PCOL 3500psi Rectangular 8. 14.2  

Stringer A36 I/Wide Flange 2.7417 0.9583 0.0617 

TGL0L2 A992Fy50 SD Section    

TGL2L4 A992Fy50 SD Section    

TGL4L12 A992Fy50 SD Section    

 

 

Table:  Frame Section Properties 01 - General, Part 2 of 7 

Table:  Frame Section Properties 01 - General, Part 2 of 7 

SectionName tw t2b tfb Area TorsConst I33 

 ft ft ft ft2 ft4 ft4 

ARL0R3    2.3646 7.750177 8.245495 

ARR3R5    2.2222 7.390792 7.463477 

ARR5R11    2.0799 6.985421 6.6953 

Cable    0.0667 0.000707 0.000354 

ENDFB 0.0313 1.5 0.0833 0.5212 0.000646 6.481335 

INTFB 0.0313 1.6667 0.1667 0.8269 0.004911 12.53867 

LBBL0L2    0.2007 0.087758 0.062943 

LBBL2L7    0.1721 0.074211 0.053658 

LBTALL    0.2413 0.141648 0.119759 

PBEAM    71.25 692.994044 535.859375 

PCOL    113.6 1570.527787 605.866667 

Stringer 0.0458 0.9583 0.0617 0.2382 0.000227 0.280883 

TGL0L2    2.0764 10.821517 29.156993 

TGL2L4    2.2795 11.256056 34.330796 

TGL4L12    2.0764 10.821517 29.156993 

 

 

Table:  Frame Section Properties 01 - General, Part 3 of 7 

Table:  Frame Section Properties 01 - General, Part 3 of 7 

SectionName I22 I23 AS2 AS3 S33 S22 

 ft4 ft4 ft2 ft2 ft3 ft3 

ARL0R3 3.892669 0. 1.1533 1.1988 3.502511 2.278635 

ARR3R5 3.75418 0. 1.1409 1.0683 3.198633 2.197569 

ARR5R11 3.615691 0. 1.1281 0.9373 2.895265 2.116502 

Cable 0.000354 0. 0.06 0.06 1. 1. 
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Table:  Frame Section Properties 01 - General, Part 3 of 7 

SectionName I22 I23 AS2 AS3 S33 S22 

 ft4 ft4 ft2 ft2 ft3 ft3 

ENDFB 0.046878 0. 0.2765 0.2083 1.467478 0.062505 

INTFB 0.128656 0. 0.2817 0.4631 2.786371 0.154385 

LBBL0L2 0.058228 0. 0.1008 0.0963 0.089515 0.082202 

LBBL2L7 0.049649 0. 0.086 0.0822 0.076879 0.070091 

LBTALL 0.081676 0. 0.1529 0.0849 0.126339 0.115304 

PBEAM 333.984375 0. 59.375 59.375 112.8125 89.0625 

PCOL 1908.858667 0. 94.6667 94.6667 151.466667 268.853333 

Stringer 0.009071 0. 0.1256 0.0985 0.204897 0.018931 

TGL0L2 3.788958 0. 1.3215 0.7163 5.795179 2.331666 

TGL2L4 3.96775 0. 1.3387 0.909 6.781392 2.441692 

TGL4L12 3.788958 0. 1.3215 0.7163 5.795179 2.331666 

 

 

Table:  Frame Section Properties 01 - General, Part 4 of 7 

Table:  Frame Section Properties 01 - General, Part 4 of 7 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 

 ft3 ft3 ft ft ft  

ARL0R3 4.06977 2.787109 1.86737 1.28306  No 

ARR3R5 3.736111 2.665509 1.83264 1.29976  No 

ARR5R11 3.405418 2.543909 1.79419 1.31849  No 

Cable 1. 1. 1. 1. 0. No 

ENDFB 1.681061 0.095835 3.5265 0.29991  No 

INTFB 3.04197 0.23366 3.89393 0.39444  No 

LBBL0L2 0.103275 0.099738 0.55994 0.53857  No 

LBBL2L7 0.088331 0.085312 0.55829 0.53704  No 

LBTALL 0.152572 0.132416 0.70446 0.58177  No 

PBEAM 169.21875 133.59375 2.74241 2.16506  Yes 

PCOL 227.2 403.28 2.3094 4.09919  Yes 

Stringer 0.236956 0.029704 1.08597 0.19515  No 

TGL0L2 6.978073 2.647625 3.74729 1.35085  No 

TGL2L4 8.003219 2.812664 3.8808 1.31932  No 

TGL4L12 6.978073 2.647625 3.74729 1.35085  No 

 

 

Table:  Frame Section Properties 01 - General, Part 5 of 7 

Table:  Frame Section Properties 01 - General, Part 5 of 7 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 

   Kip Kip-s2/ft   

ARL0R3 No Red 796.339 21.52 No 1. 

ARR3R5 No Cyan 451.295 12.2 No 1. 

ARR5R11 No Magenta 597.07 16.14 No 1. 

Cable No Yellow 91.643 2.85 No 1. 

ENDFB No Cyan 46.401 1.25 No 1. 

INTFB No Yellow 600.205 14.92 No 1. 

LBBL0L2 No Blue 49.83 1.41 No 1. 

LBBL2L7 No Cyan 128.194 3.62 No 1. 

LBTALL No Gray8Dark 338.39 10.52 No 1. 

PBEAM No Cyan 1688.625 52.48 No 1. 

PCOL No Magenta 2686.867 83.51 No 1. 
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Table:  Frame Section Properties 01 - General, Part 5 of 7 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 

   Kip Kip-s2/ft   

Stringer No Green 914.846 21.87 No 1. 

TGL0L2 No Gray8Dark 426.049 10.59 No 1. 

TGL2L4 No Green 467.728 11.63 No 1. 

TGL4L12 No Red 852.098 21.19 No 1. 

 

 

Table:  Frame Section Properties 01 - General, Part 6 of 7 

Table:  Frame Section Properties 01 - General, Part 6 of 7 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 

       

ARL0R3 1. 1. 1. 1. 1. 1. 

ARR3R5 1. 1. 1. 1. 1. 1. 

ARR5R11 1. 1. 1. 1. 1. 1. 

Cable 1. 1. 1. 1. 1. 1. 

ENDFB 1. 1. 1. 1. 1. 1. 

INTFB 1. 1. 1. 1. 1. 1. 

LBBL0L2 1. 1. 1. 1. 1. 1. 

LBBL2L7 1. 1. 1. 1. 1. 1. 

LBTALL 1. 1. 1. 1. 1. 1. 

PBEAM 1. 1. 1. 1. 1. 1. 

PCOL 1. 1. 1. 1. 1. 1. 

Stringer 1. 1. 1. 1. 1. 1. 

TGL0L2 1. 1. 1. 1. 1. 1. 

TGL2L4 1. 1. 1. 1. 1. 1. 

TGL4L12 1. 1. 1. 1. 1. 1. 

 

 

Table:  Frame Section Properties 01 - General, Part 7 of 7 

Table:  Frame Section Properties 01 - General, Part 7 of 7 

SectionName WMod GUID Notes 

    

ARL0R3 1.15  Added 2/6/2016 9:01:40 PM 

ARR3R5 1.15  Added 2/6/2016 9:11:02 PM 

ARR5R11 1.15  Added 2/6/2016 9:15:12 PM 

Cable 1.  Added 5/30/2016 11:33:00 AM 

ENDFB 1.15  Added 2/15/2013 4:03:40 PM 

INTFB 1.25  Added 2/6/2016 9:37:56 PM 

LBBL0L2 1.1  Added 2/6/2016 9:44:23 PM 

LBBL2L7 1.1  Added 2/6/2016 9:53:50 PM 

LBTALL 1.  Added 2/7/2016 9:45:39 AM 

PBEAM 1.  Added 3/15/2016 7:43:57 AM 

PCOL 1.  Added 3/15/2016 7:44:49 AM 

Stringer 1.3  Added 2/7/2016 9:56:42 AM 

TGL0L2 1.25  Added 2/6/2016 9:20:01 PM 

TGL2L4 1.25  Added 2/6/2016 9:27:49 PM 

TGL4L12 1.25  Added 2/6/2016 9:31:35 PM 
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Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 3 

Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 3 

SectionName RebarMatL RebarMatC ReinfConfig LatReinf Cover NumBars3Dir 

     ft  

PBEAM A615Gr60 A615Gr60 Rectangular Ties 0.125 3 

PCOL A615Gr60 A615Gr60 Rectangular Ties 0.125 3 

 

 

Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 3 

Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 3 

SectionName NumBars2Dir BarSizeL BarSizeC SpacingC NumCBars2 NumCBars3 

    ft   

PBEAM 3 #9 #4 0.5 3 3 

PCOL 3 #9 #4 0.5 3 3 

 

 

Table:  Frame Section Properties 02 - Concrete Column, Part 3 of 3 

Table:  Frame Section Properties 02 - 

Concrete Column, Part 3 of 3 

SectionName ReinfType 

  

PBEAM Design 

PCOL Design 

 

 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Link LinkType Mass Weight RotInert1 RotInert2 RotInert3 

  Kip-s2/ft Kip Kip-ft-s2 Kip-ft-s2 Kip-ft-s2 

P7FIX Linear 0. 0. 0. 0. 0. 

P8EXP Linear 0. 0. 0. 0. 0. 

 

 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Link DefLength DefArea PDM2I PDM2J PDM3I PDM3J 

 ft ft2     

P7FIX 1. 1. 0. 0. 0. 0. 

P8EXP 1. 1. 0. 0. 0. 0. 

 

 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Link Color GUID Notes 

    

P7FIX Yellow 93bb7642-45a2-4c68-abf3-

1921cf26fc83 

Added 3/15/2016 7:52:21 AM 

P8EXP Yellow 734d8af5-df4f-4170-9032-

7960e247016f 

Added 3/15/2016 7:52:21 AM 
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Table:  Link Property Definitions 02 - Linear, Part 1 of 2 

Table:  Link Property Definitions 02 - Linear, Part 1 of 2 

Link DOF Fixed TransKE RotKE TransCE RotCE 

   Kip/ft Kip-ft/rad Kip-s/ft Kip-ft-s/rad 

P7FIX U1 No 100000.  0.  

P7FIX U2 No 100000.  0.  

P7FIX U3 No 100000.  0.  

P7FIX R1 No  0.  0. 

P7FIX R2 No  0.  0. 

P7FIX R3 No  0.  0. 

P8EXP U1 No 100000.  0.  

P8EXP U2 No 100.  0.  

P8EXP U3 No 100000.  0.  

P8EXP R1 No  0.  0. 

P8EXP R2 No  0.  0. 

P8EXP R3 No  0.  0. 

 

 

Table:  Link Property Definitions 02 - Linear, Part 2 of 2 

Table:  Link Property Definitions 02 - Linear, Part 2 of 2 

Link DOF DJ 

  ft 

P7FIX U1  

P7FIX U2 0. 

P7FIX U3 0. 

P7FIX R1  

P7FIX R2  

P7FIX R3  

P8EXP U1  

P8EXP U2 0. 

P8EXP U3 0. 

P8EXP R1  

P8EXP R2  

P8EXP R3  

 

 

Table:  Material Properties 01 - General, Part 1 of 2 

Table:  Material Properties 01 - General, Part 1 of 2 

Material Type SymType TempDepend Color GUID 

      

3500psi Concrete Isotropic No Red  

4000Psi Concrete Isotropic No Red  

A36 Steel Isotropic No Green  

A416Gr270 Tendon Uniaxial No Yellow  

A615Gr60 Rebar Uniaxial No Magenta  

A992Fy50 Steel Isotropic No Cyan  

ASTM A586G Steel Isotropic No Green  
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Table:  Material Properties 01 - General, Part 2 of 2 

Table:  Material Properties 01 - General, Part 2 of 2 

Material Notes 

  

3500psi Normalweight f'c = 4 ksi added 2/15/2013 3:37:45 PM 

4000Psi Normalweight f'c = 4 ksi added 2/15/2013 3:37:45 PM 

A36 United States ASTM A36 Grade 36 added 2/7/2016 

9:56:18 AM 

A416Gr270 ASTM A416 Grade 270 2/6/2016 9:02:10 PM 

A615Gr60 ASTM A615 Grade 60 2/6/2016 9:02:10 PM 

A992Fy50 ASTM A992 Fy=50 ksi added 2/15/2013 3:37:45 PM 

ASTM A586G Steel added 2/7/2016 10:10:14 AM 

 

 

Table:  Material Properties 02 - Basic Mechanical Properties 

Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 

 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

3500psi 1.5000E-01 4.6621E-03 121298. 50540.83 0.2 5.5000E-06 

4000Psi 1.5000E-01 4.6621E-03 519119.5 216299.79 0.2 5.5000E-06 

A36 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

A416Gr270 4.9000E-01 1.5230E-02 4104000.   6.5000E-06 

A615Gr60 4.9000E-01 1.5230E-02 4176000.   6.5000E-06 

A992Fy50 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

ASTM A586G 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

 

 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Material Fy Fu EffFy EffFu SSCurveOpt SSHysType 

 Kip/ft2 Kip/ft2 Kip/ft2 Kip/ft2   

A36 5184. 8352. 7776. 9187.2 Simple Kinematic 

A992Fy50 7200. 9360. 7920. 10296. Simple Kinematic 

ASTM A586G 21600. 31680. 21600. 31680. Simple Kinematic 

 

 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Material SHard SMax SRup FinalSlope 

     

A36 0.02 0.14 0.2 -0.1 

A992Fy50 0.015 0.11 0.17 -0.1 

ASTM A586G 0.015 0.11 0.17 -0.1 

 

 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Material Fc LtWtConc SSCurveOpt SSHysType SFc SCap 

 Kip/ft2      

3500psi 504. No Mander Takeda 0.002219 0.005 

4000Psi 576. No Mander Takeda 0.002219 0.005 
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Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Material FinalSlope FAngle DAngle 

  Degrees Degrees 

3500psi -0.1 0. 0. 

4000Psi -0.1 0. 0. 

 

 

Analysis Output 

Table:  Modal Load Participation Ratios 

Table:  Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 

   Percent Percent 

MODAL Acceleration UX 99.9687 89.4368 

MODAL Acceleration UY 99.9055 62.4317 

MODAL Acceleration UZ 98.4484 45.4058 

 

 

Table:  Modal Participating Mass Ratios, Part 1 of 4 

Table:  Modal Participating Mass Ratios, Part 1 of 4 

OutputCase StepType StepNum Period UX UY UZ 

   Sec    

MODAL   0. 0. 0.09509 7.034E-16 

 

 

Table:  Modal Participating Mass Ratios, Part 2 of 4 

Table:  Modal Participating Mass Ratios, Part 2 of 4 

OutputCase StepType StepNum SumUX SumUY SumUZ RX 

       

MODAL   0. 0.09509 7.034E-16 6.254E-08 

 

 

Table:  Modal Participating Mass Ratios, Part 3 of 4 

Table:  Modal Participating Mass Ratios, Part 3 of 4 

OutputCase StepType StepNum RY RZ SumRX SumRY 

       

MODAL   2.483E-14 0.00229 6.254E-08 2.483E-14 

 

 

Table:  Modal Participating Mass Ratios, Part 4 of 4 

Table:  Modal Participating Mass Ratios, Part 4 of 4 

OutputCase StepType StepNum SumRZ 

    

MODAL   0.00229 

 

 

Table:  Modal Participation Factors, Part 1 of 3 

Table:  Modal Participation Factors, Part 1 of 3 

OutputCase StepType StepNum Period UX UY UZ 

   Sec Kip-ft Kip-ft Kip-ft 

MODAL   0. 0. -7.908153 1.978E-09 
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Table:  Modal Participation Factors, Part 2 of 3 

Table:  Modal Participation Factors, Part 2 of 3 

OutputCase StepType StepNum RX RY RZ ModalMass 

   Kip-ft Kip-ft Kip-ft Kip-ft-s2 

MODAL   0.006413 0.000229 345.436956 0. 

 

 

Table:  Modal Participation Factors, Part 3 of 3 

Table:  Modal Participation Factors, Part 3 of 3 

OutputCase StepType StepNum ModalStiff 

   Kip-ft 

MODAL   0. 

 

 

Table:  Modal Periods And Frequencies 

 

 
 

 

 

 

 

 

 

 

 

 

Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 

   Sec Cyc/sec rad/sec rad2/sec2 

MODAL   0. 0.0000E+00 0.0000E+00 0.0000E+00 
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Section 1  City Island Bridge Analysis Input 

Table:  Material Properties 01 - General, Part 1 of 2 

Table:  Material Properties 01 - General, Part 1 of 2 

Material Type SymType TempDepen
d 

Color GUID 

      

3500psi Concrete Isotropic No Red  
4000Psi Concrete Isotropic No Red  

A36 Steel Isotropic No Green  
A416Gr270 Tendon Uniaxial No Yellow  
A615Gr60 Rebar Uniaxial No Magenta  
A992Fy50 Steel Isotropic No Cyan  

ASTM 
A586G 

Steel Isotropic No Green  

 
 
Table:  Material Properties 01 - General, Part 2 of 2 

Table:  Material Properties 01 - General, Part 2 of 2 

Material Notes 
  

3500psi Normalweight f'c = 4 ksi added 
2/15/2013 3:37:45 PM 

4000Psi Normalweight f'c = 4 ksi added 
2/15/2013 3:37:45 PM 

A36 United States ASTM A36 Grade 36 
added 2/7/2016 9:56:18 AM 

A416Gr270 ASTM A416 Grade 270 2/6/2016 
9:02:10 PM 

A615Gr60 ASTM A615 Grade 60 2/6/2016 
9:02:10 PM 

A992Fy50 ASTM A992 Fy=50 ksi added 
2/15/2013 3:37:45 PM 

ASTM 
A586G 

Steel added 2/7/2016 10:10:14 AM 

 
 
Table:  Material Properties 02 - Basic Mechanical Properties 

Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

3500psi 1.5000E-01 4.6621E-03 631269. 263028.75 0.2 5.5000E-06 
4000Psi 1.5000E-01 4.6621E-03 519119.5 216299.79 0.2 5.5000E-06 

A36 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
A416Gr270 4.9000E-01 1.5230E-02 4104000.   6.5000E-06 
A615Gr60 4.9000E-01 1.5230E-02 4176000.   6.5000E-06 
A992Fy50 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

ASTM 
A586G 

4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
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Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Material Fy Fu EffFy EffFu SSCurveOpt SSHysType SHard 
 Kip/ft2 Kip/ft2 Kip/ft2 Kip/ft2    

A36 5184. 8352. 7776. 9187.2 Simple Kinematic 0.02 
A992Fy50 7200. 9360. 7920. 10296. Simple Kinematic 0.015 

ASTM 
A586G 

21600. 31680. 21600. 31680. Simple Kinematic 0.015 

 
 
Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Material SMax SRup FinalSlope 
    

A36 0.14 0.2 -0.1 
A992Fy50 0.11 0.17 -0.1 

ASTM 
A586G 

0.11 0.17 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Material Fc LtWtConc SSCurveOpt SSHysType SFc SCap FinalSlope 
 Kip/ft2       

3500psi 655. No Mander Takeda 0.002219 0.005 -0.1 
4000Psi 576. No Mander Takeda 0.002219 0.005 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Table:  Material Properties 03b - Concrete 
Data, Part 2 of 2 

Material FAngle DAngle 
 Degrees Degrees 

3500psi 0. 0. 
4000Psi 0. 0. 

 
 
Table:  Frame Section Properties 01 - General, Part 1 of 7 

Table:  Frame Section Properties 01 - General, Part 1 of 7 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

ARL0R3 A992Fy50 SD Section    
ARR3R5 A992Fy50 SD Section    
ARR5R11 A992Fy50 SD Section    

Cable ASTM A586G General 1. 1.  
ENDFB A992Fy50 I/Wide Flange 8.8333 1.5 0.0833 
INTFB A992Fy50 I/Wide Flange 9. 1.6667 0.1667 

LBBL0L2 A992Fy50 SD Section    
LBBL2L7 A992Fy50 SD Section    
LBTALL A992Fy50 SD Section    
PBEAM 3500psi Rectangular 9.5 7.5  
PCOL 3500psi Rectangular 8. 14.2  
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Table:  Frame Section Properties 01 - General, Part 1 of 7 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

Stringer A36 I/Wide Flange 2.7417 0.9583 0.0617 
TGL0L2 A992Fy50 SD Section    
TGL2L4 A992Fy50 SD Section    

TGL4L12 A992Fy50 SD Section    

 
 
Table:  Frame Section Properties 01 - General, Part 2 of 7 

Table:  Frame Section Properties 01 - General, Part 2 of 7 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

ARL0R3    2.3646 7.750177 8.245495 
ARR3R5    2.2222 7.390792 7.463477 
ARR5R11    2.0799 6.985421 6.6953 

Cable    0.0667 0.000707 0.000354 
ENDFB 0.0313 1.5 0.0833 0.5212 0.000646 6.481335 
INTFB 0.0313 1.6667 0.1667 0.8269 0.004911 12.53867 

LBBL0L2    0.2007 0.087758 0.062943 
LBBL2L7    0.1721 0.074211 0.053658 
LBTALL    0.2413 0.141648 0.119759 
PBEAM    71.25 692.994044 535.859375 
PCOL    113.6 1570.527787 605.866667 

Stringer 0.0458 0.9583 0.0617 0.2382 0.000227 0.280883 
TGL0L2    2.0764 10.821517 29.156993 
TGL2L4    2.2795 11.256056 34.330796 

TGL4L12    2.0764 10.821517 29.156993 

 
 
Table:  Frame Section Properties 01 - General, Part 3 of 7 

Table:  Frame Section Properties 01 - General, Part 3 of 7 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

ARL0R3 3.892669 0. 1.1533 1.1988 3.502511 2.278635 
ARR3R5 3.75418 0. 1.1409 1.0683 3.198633 2.197569 
ARR5R11 3.615691 0. 1.1281 0.9373 2.895265 2.116502 

Cable 0.000354 0. 0.06 0.06 1. 1. 
ENDFB 0.046878 0. 0.2765 0.2083 1.467478 0.062505 
INTFB 0.128656 0. 0.2817 0.4631 2.786371 0.154385 

LBBL0L2 0.058228 0. 0.1008 0.0963 0.089515 0.082202 
LBBL2L7 0.049649 0. 0.086 0.0822 0.076879 0.070091 
LBTALL 0.081676 0. 0.1529 0.0849 0.126339 0.115304 
PBEAM 333.984375 0. 59.375 59.375 112.8125 89.0625 
PCOL 1908.858667 0. 94.6667 94.6667 151.466667 268.853333 

Stringer 0.009071 0. 0.1256 0.0985 0.204897 0.018931 
TGL0L2 3.788958 0. 1.3215 0.7163 5.795179 2.331666 
TGL2L4 3.96775 0. 1.3387 0.909 6.781392 2.441692 

TGL4L12 3.788958 0. 1.3215 0.7163 5.795179 2.331666 
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Table:  Frame Section Properties 01 - General, Part 4 of 7 

Table:  Frame Section Properties 01 - General, Part 4 of 7 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

ARL0R3 4.06977 2.787109 1.86737 1.28306  No 
ARR3R5 3.736111 2.665509 1.83264 1.29976  No 
ARR5R11 3.405418 2.543909 1.79419 1.31849  No 

Cable 1. 1. 1. 1. 0. No 
ENDFB 1.681061 0.095835 3.5265 0.29991  No 
INTFB 3.04197 0.23366 3.89393 0.39444  No 

LBBL0L2 0.103275 0.099738 0.55994 0.53857  No 
LBBL2L7 0.088331 0.085312 0.55829 0.53704  No 
LBTALL 0.152572 0.132416 0.70446 0.58177  No 
PBEAM 169.21875 133.59375 2.74241 2.16506  Yes 
PCOL 227.2 403.28 2.3094 4.09919  Yes 

Stringer 0.236956 0.029704 1.08597 0.19515  No 
TGL0L2 6.978073 2.647625 3.74729 1.35085  No 
TGL2L4 8.003219 2.812664 3.8808 1.31932  No 

TGL4L12 6.978073 2.647625 3.74729 1.35085  No 

 
 
Table:  Frame Section Properties 01 - General, Part 5 of 7 

Table:  Frame Section Properties 01 - General, Part 5 of 7 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

ARL0R3 No Red 796.339 21.52 No 1. 
ARR3R5 No Cyan 451.295 12.2 No 1. 
ARR5R11 No Magenta 597.07 16.14 No 1. 

Cable No Yellow 91.643 2.85 No 1. 
ENDFB No Cyan 46.401 1.25 No 1. 
INTFB No Yellow 600.205 14.92 No 1. 

LBBL0L2 No Blue 49.83 1.41 No 1. 
LBBL2L7 No Cyan 128.194 3.62 No 1. 
LBTALL No Gray8Dark 338.39 10.52 No 1. 
PBEAM No Cyan 1688.625 52.48 No 1. 
PCOL No Magenta 2686.867 83.51 No 1. 

Stringer No Green 914.846 21.87 No 1. 
TGL0L2 No Gray8Dark 426.049 10.59 No 1. 
TGL2L4 No Green 467.728 11.63 No 1. 

TGL4L12 No Red 852.098 21.19 No 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 6 of 7 

Table:  Frame Section Properties 01 - General, Part 6 of 7 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

ARL0R3 1. 1. 1. 1. 1. 1. 
ARR3R5 1. 1. 1. 1. 1. 1. 
ARR5R11 1. 1. 1. 1. 1. 1. 

Cable 1. 1. 1. 1. 1. 1. 
ENDFB 1. 1. 1. 1. 1. 1. 
INTFB 1. 1. 1. 1. 1. 1. 
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Table:  Frame Section Properties 01 - General, Part 6 of 7 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

LBBL0L2 1. 1. 1. 1. 1. 1. 
LBBL2L7 1. 1. 1. 1. 1. 1. 
LBTALL 1. 1. 1. 1. 1. 1. 
PBEAM 1. 1. 1. 1. 1. 1. 
PCOL 1. 1. 1. 1. 1. 1. 

Stringer 1. 1. 1. 1. 1. 1. 
TGL0L2 1. 1. 1. 1. 1. 1. 
TGL2L4 1. 1. 1. 1. 1. 1. 

TGL4L12 1. 1. 1. 1. 1. 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 7 of 7 

Table:  Frame Section Properties 01 - General, Part 7 of 7 

SectionName WMod GUID Notes 
    

ARL0R3 1.15  Added 2/6/2016 9:01:40 PM 
ARR3R5 1.15  Added 2/6/2016 9:11:02 PM 
ARR5R11 1.15  Added 2/6/2016 9:15:12 PM 

Cable 1.  Added 5/30/2016 11:33:00 AM 
ENDFB 1.15  Added 2/15/2013 4:03:40 PM 
INTFB 1.25  Added 2/6/2016 9:37:56 PM 

LBBL0L2 1.1  Added 2/6/2016 9:44:23 PM 
LBBL2L7 1.1  Added 2/6/2016 9:53:50 PM 
LBTALL 1.  Added 2/7/2016 9:45:39 AM 
PBEAM 1.  Added 3/15/2016 7:43:57 AM 
PCOL 1.  Added 3/15/2016 7:44:49 AM 

Stringer 1.3  Added 2/7/2016 9:56:42 AM 
TGL0L2 1.25  Added 2/6/2016 9:20:01 PM 
TGL2L4 1.25  Added 2/6/2016 9:27:49 PM 

TGL4L12 1.25  Added 2/6/2016 9:31:35 PM 

 
 
Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

SectionNam
e 

RebarMatL RebarMatC ReinfConfig LatReinf Cover NumBars3
Dir 

NumBars2
Dir 

     ft   

PBEAM A615Gr60 A615Gr60 Rectangular Ties 0.125 3 3 
PCOL A615Gr60 A615Gr60 Rectangular Ties 0.125 3 3 

 
 
Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

SectionNam
e 

BarSizeL BarSizeC SpacingC NumCBars2 NumCBars3 ReinfType 

   ft    

PBEAM #9 #4 0.5 3 3 Design 
PCOL #9 #4 0.5 3 3 Design 
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Table:  Link Property Definitions 01 - General, Part 1 of 3 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Link LinkType Mass Weight RotInert1 RotInert2 RotInert3 
  Kip-s2/ft Kip Kip-ft-s2 Kip-ft-s2 Kip-ft-s2 

P7FIX Linear 0. 0. 0. 0. 0. 
P8EXP Linear 0. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 2 of 3 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Link DefLength DefArea PDM2I PDM2J PDM3I PDM3J 
 ft ft2     

P7FIX 1. 1. 0. 0. 0. 0. 
P8EXP 1. 1. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 3 of 3 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Link Color GUID Notes 
    

P7FIX Yellow 93bb7642-45a2-4c68-
abf3-1921cf26fc83 

Added 3/15/2016 7:52:21 AM 

P8EXP Yellow 734d8af5-df4f-4170-
9032-7960e247016f 

Added 3/15/2016 7:52:21 AM 

 
 
Table:  Link Property Definitions 02 - Linear 

Table:  Link Property Definitions 02 - Linear 

Link DOF Fixed TransKE RotKE TransCE RotCE DJ 
   Kip/ft Kip-ft/rad Kip-s/ft Kip-ft-s/rad ft 

P7FIX U1 No 100000.  0.   
P7FIX U2 No 100000.  0.  0. 
P7FIX U3 No 100000.  0.  0. 
P7FIX R1 Yes      
P7FIX R2 Yes      
P7FIX R3 No  0.  0.  
P8EXP U1 No 100000.  0.   
P8EXP U2 No 100000.  0.  0. 
P8EXP U3 No 100000.  0.  0. 
P8EXP R1 Yes      
P8EXP R2 Yes      
P8EXP R3 No  0.  0.  
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Section 2  City Island Bridge Load Case Data 

Table:  Load Case Definitions, Part 1 of 3 

Table:  Load Case Definitions, Part 1 of 3 

Case Type InitialCond ModalCase BaseCase MassSource DesTypeOpt 
       

DEAD NonStatic Zero    Prog Det 
MODAL LinModal DEAD    Prog Det 

LIVELOAD LinMoving DEAD    Prog Det 
PDELTA NonStatic Zero    Prog Det 

BUCKLING
_DEAD 

LinBuckling PDELTA    Prog Det 

 
 
Table:  Load Case Definitions, Part 2 of 3 

Table:  Load Case Definitions, Part 2 of 3 

Case DesignType DesActOpt DesignAct AutoType RunCase CaseStatus 
       

DEAD DEAD Prog Det Non-
Composite 

None Yes Finished 

MODAL OTHER Prog Det Other None Yes Finished 
LIVELOAD VEHICLE 

LIVE 
Prog Det Short-Term 

Composite 
None Yes Finished 

PDELTA DEAD Prog Det Non-
Composite 

None No Not Run 

BUCKLING
_DEAD 

DEAD Prog Det Other None No Not Run 

 
 
Table:  Load Case Definitions, Part 3 of 3 

Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

DEAD   
MODAL   

LIVELOAD   
PDELTA   

BUCKLING
_DEAD 

  

 
 
Table:  Case - Static 1 - Load Assignments 

Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 
    

DEAD Load pattern DEAD 1. 
PDELTA Load pattern DEAD 1. 
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Table:  Case - Static 2 - Nonlinear Load Application 

Table:  Case - Static 2 - Nonlinear Load Application 

Case LoadApp MonitorDOF MonitorJt 
    

DEAD Full Load U1 124 
PDELTA Full Load U1 124 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Case Unloading GeoNonLin ResultsSave MaxTotal MaxNull 
      

DEAD Unload Entire None Final State 200 50 
PDELTA Unload Entire Large Displ Final State 200 50 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Case MaxIterCS MaxIterNR ItConvTol UseEvStep EvLumpTol LSPerIter 
       

DEAD 10 40 1.0000E-04 Yes 0.01 20 
PDELTA 10 40 1.0000E-04 Yes 0.01 20 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Case LSTol LSStepFact StageSave StageMinIns StageMinTD 
      

DEAD 0.1 1.618    
PDELTA 0.1 1.618    

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Case FrameTC FrameHinge CableTC LinkTC LinkOther TimeDepMa
t 

       

DEAD Yes Yes Yes Yes Yes  
PDELTA Yes Yes Yes Yes Yes  

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TFMaxIter TFTol TFAccelFact TFNoStop 
     

DEAD 10 0.01 1. No 
PDELTA 10 0.01 1. No 
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Table:  Case - Moving Load 1 - Lane Assignments 

Table:  Case - Moving Load 1 - Lane Assignments 

Case AssignNum VehClass ScaleFactor MinLoaded MaxLoaded NumLanes 
       

LIVELOAD 1 HS20LOADING 1. 1 4 6 

 
 
Table:  Case - Moving Load 2 - Lanes Loaded 

Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 
   

LIVELOAD 1 LTLANE1 
LIVELOAD 1 LTLANE1C 
LIVELOAD 1 LTLANE2 
LIVELOAD 1 RGTLANE1 
LIVELOAD 1 RGTLANE1C 
LIVELOAD 1 RGTLANE2 

 
 
Table:  Case - Moving Load 3 - MultiLane Factors 

Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 1 1. 
LIVELOAD 2 1. 
LIVELOAD 3 0.9 
LIVELOAD 4 0.75 
LIVELOAD 5 0.75 
LIVELOAD 6 0.75 
LIVELOAD 7 0.75 
LIVELOAD 8 0.75 
LIVELOAD 9 0.75 
LIVELOAD 10 0.75 
LIVELOAD 11 0.75 
LIVELOAD 12 0.75 
LIVELOAD 13 0.75 
LIVELOAD 14 0.75 
LIVELOAD 15 0.75 
LIVELOAD 16 0.75 
LIVELOAD 17 0.75 
LIVELOAD 18 0.75 
LIVELOAD 19 0.75 
LIVELOAD 20 0.75 
LIVELOAD 21 0.75 
LIVELOAD 22 0.75 
LIVELOAD 23 0.75 
LIVELOAD 24 0.75 
LIVELOAD 25 0.75 
LIVELOAD 26 0.75 
LIVELOAD 27 0.75 
LIVELOAD 28 0.75 
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Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 29 0.75 
LIVELOAD 30 0.75 
LIVELOAD 31 0.75 
LIVELOAD 32 0.75 
LIVELOAD 33 0.75 
LIVELOAD 34 0.75 
LIVELOAD 35 0.75 
LIVELOAD 36 0.75 
LIVELOAD 37 0.75 
LIVELOAD 38 0.75 
LIVELOAD 39 0.75 
LIVELOAD 40 0.75 
LIVELOAD 41 0.75 

 
 
Table:  Case - Modal 1 - General, Part 1 of 2 

Table:  Case - Modal 1 - General, Part 1 of 2 

Case ModeType MaxNumMo
des 

MinNumMo
des 

EigenShift EigenCutoff EigenTol 

    Cyc/sec Cyc/sec  

MODAL Eigen 30 1 0.0000E+00 0.0000E+00 1.0000E-09 

 
 
Table:  Case - Modal 1 - General, Part 2 of 2 

Table:  Case - Modal 1 - General, 
Part 2 of 2 

Case AutoShift 
  

MODAL Yes 

 
 
Section 3  City Island Bridge Modal Analysis Results 

Table:  Modal Load Participation Ratios 

Table:  Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 
   Percent Percent 

MODAL Acceleration UX 99.5336 68.8094 
MODAL Acceleration UY 99.8264 59.1319 
MODAL Acceleration UZ 99.3687 42.9168 

 
 
Table:  Modal Participation Factors, Part 1 of 2 

Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNum Period UX UY UZ RX 
   Sec Kip-ft Kip-ft Kip-ft Kip-ft 

MODAL   0. 0. -0.1183 2.749E-
06 

-0.006939 
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Table:  Modal Participation Factors, Part 2 of 2 

Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-ft Kip-ft Kip-ft-s2 Kip-ft 

MODAL   -0.000089 193.059528 0. 0. 

 
 
Table:  Modal Periods And Frequencies 

Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 
   Sec Cyc/sec rad/sec rad2/sec2 

MODAL   0. 0.0000E+00 0.0000E+00 0.0000E+00 

 
 
Table:  Program Control, Part 1 of 2 

Table:  Program Control, Part 1 of 2 

ProgramNa
me 

Version ProgLevel LicenseNum LicenseO
S 

LicenseSC LicenseHT CurrUnits 

        

SAP2000 18.1.1 Advanced 2010*1GRWHL
W4599V5FQ 

No No No Kip, ft, F 

 
 
Table:  Program Control, Part 2 of 2 

Table:  Program Control, Part 2 of 2 

SteelCode ConcCode AlumCode ColdCode RegenHinge 
     

AISC360-05/IBC2006 ACI 318-08/IBC2009 AA-ASD 2000 AISI-ASD96 Yes 
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Section 1  City Island Bridge Input Data 

Table:  Material Properties 01 - General, Part 1 of 2 

Table:  Material Properties 01 - General, Part 1 of 2 

Material Type SymType TempDepen
d 

Color GUID 

      

3500psi Concrete Isotropic No Red  
4000Psi Concrete Isotropic No Red  

A36 Steel Isotropic No Green  
A416Gr270 Tendon Uniaxial No Yellow  
A615Gr60 Rebar Uniaxial No Magenta  
A992Fy50 Steel Isotropic No Cyan  

ASTM 
A586G 

Steel Isotropic No Green  

 
 
Table:  Material Properties 01 - General, Part 2 of 2 

Table:  Material Properties 01 - General, Part 2 of 2 

Material Notes 
  

3500psi Normalweight f'c = 4 ksi added 
2/15/2013 3:37:45 PM 

4000Psi Normalweight f'c = 4 ksi added 
2/15/2013 3:37:45 PM 

A36 United States ASTM A36 Grade 36 
added 2/7/2016 9:56:18 AM 

A416Gr270 ASTM A416 Grade 270 2/6/2016 
9:02:10 PM 

A615Gr60 ASTM A615 Grade 60 2/6/2016 
9:02:10 PM 

A992Fy50 ASTM A992 Fy=50 ksi added 
2/15/2013 3:37:45 PM 

ASTM 
A586G 

Steel added 2/7/2016 10:10:14 AM 

 
 
Table:  Material Properties 02 - Basic Mechanical Properties 

Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

3500psi 1.5000E-01 4.6621E-03 121298. 50540.83 0.2 5.5000E-06 
4000Psi 1.5000E-01 4.6621E-03 519119.5 216299.79 0.2 5.5000E-06 

A36 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
A416Gr270 4.9000E-01 1.5230E-02 4104000.   6.5000E-06 
A615Gr60 4.9000E-01 1.5230E-02 4176000.   6.5000E-06 
A992Fy50 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

ASTM 
A586G 

4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
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Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Material Fy Fu EffFy EffFu SSCurveOpt SSHysType SHard 
 Kip/ft2 Kip/ft2 Kip/ft2 Kip/ft2    

A36 5184. 8352. 7776. 9187.2 Simple Kinematic 0.02 
A992Fy50 7200. 9360. 7920. 10296. Simple Kinematic 0.015 

ASTM 
A586G 

21600. 31680. 21600. 31680. Simple Kinematic 0.015 

 
 
Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Material SMax SRup FinalSlope 
    

A36 0.14 0.2 -0.1 
A992Fy50 0.11 0.17 -0.1 

ASTM 
A586G 

0.11 0.17 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Material Fc LtWtConc SSCurveOpt SSHysTy
pe 

SFc SCap FinalSlo
pe 

 Kip/ft2       

3500psi 504. No Mander Takeda 0.002219 0.005 -0.1 
4000Psi 576. No Mander Takeda 0.002219 0.005 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Table:  Material Properties 03b - Concrete 
Data, Part 2 of 2 

Material FAngle DAngle 
 Degrees Degrees 

3500psi 0. 0. 
4000Psi 0. 0. 

 
 
Table:  Frame Section Properties 01 - General, Part 1 of 7 

Table:  Frame Section Properties 01 - General, Part 1 of 7 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

ARL0R3 A992Fy50 SD Section    
ARR3R5 A992Fy50 SD Section    
ARR5R11 A992Fy50 SD Section    

Cable ASTM A586G General 1. 1.  
ENDFB A992Fy50 I/Wide Flange 8.8333 1.5 0.0833 
INTFB A992Fy50 I/Wide Flange 9. 1.6667 0.1667 

LBBL0L2 A992Fy50 SD Section    
LBBL2L7 A992Fy50 SD Section    
LBTALL A992Fy50 SD Section    
PBEAM 3500psi Rectangular 9.5 7.5  
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Table:  Frame Section Properties 01 - General, Part 1 of 7 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

PCOL 3500psi Rectangular 8. 14.2  
Stringer A36 I/Wide Flange 2.7417 0.9583 0.0617 
TGL0L2 A992Fy50 SD Section    
TGL2L4 A992Fy50 SD Section    

TGL4L12 A992Fy50 SD Section    

 
 
Table:  Frame Section Properties 01 - General, Part 2 of 7 

Table:  Frame Section Properties 01 - General, Part 2 of 7 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

ARL0R3    2.3646 7.750177 8.245495 
ARR3R5    2.2222 7.390792 7.463477 
ARR5R11    2.0799 6.985421 6.6953 

Cable    0.0667 0.000707 0.000354 
ENDFB 0.0313 1.5 0.0833 0.5212 0.000646 6.481335 
INTFB 0.0313 1.6667 0.1667 0.8269 0.004911 12.53867 

LBBL0L2    0.2007 0.087758 0.062943 
LBBL2L7    0.1721 0.074211 0.053658 
LBTALL    0.2413 0.141648 0.119759 
PBEAM    71.25 692.994044 535.859375 
PCOL    113.6 1570.527787 605.866667 

Stringer 0.0458 0.9583 0.0617 0.2382 0.000227 0.280883 
TGL0L2    2.0764 10.821517 29.156993 
TGL2L4    2.2795 11.256056 34.330796 

TGL4L12    2.0764 10.821517 29.156993 

 
 
Table:  Frame Section Properties 01 - General, Part 3 of 7 

Table:  Frame Section Properties 01 - General, Part 3 of 7 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

ARL0R3 3.892669 0. 1.1533 1.1988 3.502511 2.278635 
ARR3R5 3.75418 0. 1.1409 1.0683 3.198633 2.197569 
ARR5R11 3.615691 0. 1.1281 0.9373 2.895265 2.116502 

Cable 0.000354 0. 0.06 0.06 1. 1. 
ENDFB 0.046878 0. 0.2765 0.2083 1.467478 0.062505 
INTFB 0.128656 0. 0.2817 0.4631 2.786371 0.154385 

LBBL0L2 0.058228 0. 0.1008 0.0963 0.089515 0.082202 
LBBL2L7 0.049649 0. 0.086 0.0822 0.076879 0.070091 
LBTALL 0.081676 0. 0.1529 0.0849 0.126339 0.115304 
PBEAM 333.984375 0. 59.375 59.375 112.8125 89.0625 
PCOL 1908.858667 0. 94.6667 94.6667 151.466667 268.853333 

Stringer 0.009071 0. 0.1256 0.0985 0.204897 0.018931 
TGL0L2 3.788958 0. 1.3215 0.7163 5.795179 2.331666 
TGL2L4 3.96775 0. 1.3387 0.909 6.781392 2.441692 

TGL4L12 3.788958 0. 1.3215 0.7163 5.795179 2.331666 
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Table:  Frame Section Properties 01 - General, Part 4 of 7 

Table:  Frame Section Properties 01 - General, Part 4 of 7 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

ARL0R3 4.06977 2.787109 1.86737 1.28306  No 
ARR3R5 3.736111 2.665509 1.83264 1.29976  No 
ARR5R11 3.405418 2.543909 1.79419 1.31849  No 

Cable 1. 1. 1. 1. 0. No 
ENDFB 1.681061 0.095835 3.5265 0.29991  No 
INTFB 3.04197 0.23366 3.89393 0.39444  No 

LBBL0L2 0.103275 0.099738 0.55994 0.53857  No 
LBBL2L7 0.088331 0.085312 0.55829 0.53704  No 
LBTALL 0.152572 0.132416 0.70446 0.58177  No 
PBEAM 169.21875 133.59375 2.74241 2.16506  Yes 
PCOL 227.2 403.28 2.3094 4.09919  Yes 

Stringer 0.236956 0.029704 1.08597 0.19515  No 
TGL0L2 6.978073 2.647625 3.74729 1.35085  No 
TGL2L4 8.003219 2.812664 3.8808 1.31932  No 

TGL4L12 6.978073 2.647625 3.74729 1.35085  No 

 
 
Table:  Frame Section Properties 01 - General, Part 5 of 7 

Table:  Frame Section Properties 01 - General, Part 5 of 7 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

ARL0R3 No Red 796.339 21.52 No 1. 
ARR3R5 No Cyan 451.295 12.2 No 1. 
ARR5R11 No Magenta 597.07 16.14 No 1. 

Cable No Yellow 91.643 2.85 No 1. 
ENDFB No Cyan 46.401 1.25 No 1. 
INTFB No Yellow 600.205 14.92 No 1. 

LBBL0L2 No Blue 49.83 1.41 No 1. 
LBBL2L7 No Cyan 128.194 3.62 No 1. 
LBTALL No Gray8Dark 338.39 10.52 No 1. 
PBEAM No Cyan 1688.625 52.48 No 1. 
PCOL No Magenta 2686.867 83.51 No 1. 

Stringer No Green 914.846 21.87 No 1. 
TGL0L2 No Gray8Dark 426.049 10.59 No 1. 
TGL2L4 No Green 467.728 11.63 No 1. 

TGL4L12 No Red 852.098 21.19 No 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 6 of 7 

Table:  Frame Section Properties 01 - General, Part 6 of 7 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

ARL0R3 1. 1. 1. 1. 1. 1. 
ARR3R5 1. 1. 1. 1. 1. 1. 
ARR5R11 1. 1. 1. 1. 1. 1. 

Cable 1. 1. 1. 1. 1. 1. 
ENDFB 1. 1. 1. 1. 1. 1. 
INTFB 1. 1. 1. 1. 1. 1. 
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Table:  Frame Section Properties 01 - General, Part 6 of 7 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

LBBL0L2 1. 1. 1. 1. 1. 1. 
LBBL2L7 1. 1. 1. 1. 1. 1. 
LBTALL 1. 1. 1. 1. 1. 1. 
PBEAM 1. 1. 1. 1. 1. 1. 
PCOL 1. 1. 1. 1. 1. 1. 

Stringer 1. 1. 1. 1. 1. 1. 
TGL0L2 1. 1. 1. 1. 1. 1. 
TGL2L4 1. 1. 1. 1. 1. 1. 

TGL4L12 1. 1. 1. 1. 1. 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 7 of 7 

Table:  Frame Section Properties 01 - General, Part 7 of 7 

SectionName WMod GUID Notes 
    

ARL0R3 1.15  Added 2/6/2016 9:01:40 PM 
ARR3R5 1.15  Added 2/6/2016 9:11:02 PM 
ARR5R11 1.15  Added 2/6/2016 9:15:12 PM 

Cable 1.  Added 5/30/2016 11:33:00 AM 
ENDFB 1.15  Added 2/15/2013 4:03:40 PM 
INTFB 1.25  Added 2/6/2016 9:37:56 PM 

LBBL0L2 1.1  Added 2/6/2016 9:44:23 PM 
LBBL2L7 1.1  Added 2/6/2016 9:53:50 PM 
LBTALL 1.  Added 2/7/2016 9:45:39 AM 
PBEAM 1.  Added 3/15/2016 7:43:57 AM 
PCOL 1.  Added 3/15/2016 7:44:49 AM 

Stringer 1.3  Added 2/7/2016 9:56:42 AM 
TGL0L2 1.25  Added 2/6/2016 9:20:01 PM 
TGL2L4 1.25  Added 2/6/2016 9:27:49 PM 

TGL4L12 1.25  Added 2/6/2016 9:31:35 PM 

 
 
Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

SectionNam
e 

RebarMatL RebarMatC ReinfConfig LatReinf Cover NumBars3
Dir 

NumBars
2Dir 

     ft   

PBEAM A615Gr60 A615Gr60 Rectangular Ties 0.125 3 3 
PCOL A615Gr60 A615Gr60 Rectangular Ties 0.125 3 3 

 
 
Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

SectionNam
e 

BarSizeL BarSizeC SpacingC NumCBars2 NumCBars3 ReinfType 

   ft    

PBEAM #9 #4 0.5 3 3 Design 
PCOL #9 #4 0.5 3 3 Design 
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Table:  Link Property Definitions 01 - General, Part 1 of 3 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Link LinkType Mass Weight RotInert1 RotInert2 RotInert3 
  Kip-s2/ft Kip Kip-ft-s2 Kip-ft-s2 Kip-ft-s2 

P7FIX Linear 0. 0. 0. 0. 0. 
P8EXP Linear 0. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 2 of 3 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Link DefLength DefArea PDM2I PDM2J PDM3I PDM3J 
 ft ft2     

P7FIX 1. 1. 0. 0. 0. 0. 
P8EXP 1. 1. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 3 of 3 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Link Color GUID Notes 
    

P7FIX Yellow 93bb7642-45a2-4c68-
abf3-1921cf26fc83 

Added 3/15/2016 7:52:21 AM 

P8EXP Yellow 734d8af5-df4f-4170-
9032-7960e247016f 

Added 3/15/2016 7:52:21 AM 

 
 
Table:  Link Property Definitions 02 - Linear 

Table:  Link Property Definitions 02 - Linear 

Link DOF Fixed TransKE RotKE TransCE RotCE DJ 
   Kip/ft Kip-ft/rad Kip-s/ft Kip-ft-s/rad ft 

P7FIX U1 No 100000.  0.   
P7FIX U2 No 100000.  0.  0. 
P7FIX U3 No 100000.  0.  0. 
P7FIX R1 No  0.  0.  
P7FIX R2 No  0.  0.  
P7FIX R3 No  0.  0.  
P8EXP U1 No 100000.  0.   
P8EXP U2 No 100.  0.  0. 
P8EXP U3 No 100000.  0.  0. 
P8EXP R1 No  0.  0.  
P8EXP R2 No  0.  0.  
P8EXP R3 No  0.  0.  
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Section 2 City Island Load Case Input 

Table:  Load Case Definitions, Part 1 of 3 

Table:  Load Case Definitions, Part 1 of 3 

Case Type InitialCond ModalCase BaseCase MassSource DesTypeOpt 
       

DEAD NonStatic Zero    Prog Det 
MODAL LinModal DEAD    Prog Det 

LIVELOAD LinMoving DEAD    Prog Det 
PDELTA NonStatic Zero    Prog Det 

BUCKLING
_DEAD 

LinBuckling PDELTA    Prog Det 

WIND LinStatic PDELTA    Prog Det 

 
 
Table:  Load Case Definitions, Part 2 of 3 

Table:  Load Case Definitions, Part 2 of 3 

Case DesignType DesActOpt DesignAct AutoType RunCase CaseStatus 
       

DEAD DEAD Prog Det Non-
Composite 

None Yes Finished 

MODAL OTHER Prog Det Other None Yes Finished 
LIVELOAD VEHICLE 

LIVE 
Prog Det Short-Term 

Composite 
None Yes Finished 

PDELTA DEAD Prog Det Non-
Composite 

None Yes Finished 

BUCKLING
_DEAD 

DEAD Prog Det Other None No Not Run 

WIND DEAD Prog Det Non-
Composite 

None Yes Finished 

 
 
Table:  Load Case Definitions, Part 3 of 3 

Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

DEAD   
MODAL   

LIVELOAD   
PDELTA   

BUCKLING
_DEAD 

  

WIND   

 
 
Table:  Case - Modal 1 - General, Part 1 of 2 

Table:  Case - Modal 1 - General, Part 1 of 2 

Case ModeType MaxNumMo
des 

MinNumMo
des 

EigenShift EigenCutoff EigenTol 

    Cyc/sec Cyc/sec  

MODAL Eigen 30 1 0.0000E+00 0.0000E+00 1.0000E-09 
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Table:  Case - Modal 1 - General, Part 2 of 2 

Table:  Case - Modal 1 - General, 
Part 2 of 2 

Case AutoShift 
  

MODAL Yes 

 
 
Table:  Case - Static 1 - Load Assignments 

Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 
    

DEAD Load pattern DEAD 1. 
PDELTA Load pattern DEAD 1. 

WIND Load pattern WIND 1. 

 
 
Table:  Case - Static 2 - Nonlinear Load Application 

Table:  Case - Static 2 - Nonlinear Load Application 

Case LoadApp MonitorDOF MonitorJt 
    

DEAD Full Load U1 124 
PDELTA Full Load U1 124 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Case Unloading GeoNonLin ResultsSave MaxTotal MaxNull 
      

DEAD Unload Entire None Final State 200 50 
PDELTA Unload Entire Large Displ Final State 200 50 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Case MaxIterCS MaxIterNR ItConvTol UseEvStep EvLumpTol LSPerIter 
       

DEAD 10 40 1.0000E-04 Yes 0.01 20 
PDELTA 10 40 1.0000E-04 Yes 0.01 20 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Case LSTol LSStepFact StageSave StageMinIn
s 

StageMinTD 

      

DEAD 0.1 1.618    
PDELTA 0.1 1.618    
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Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Case FrameTC FrameHinge CableTC LinkTC LinkOther TimeDepMa
t 

       

DEAD Yes Yes Yes Yes Yes  
PDELTA Yes Yes Yes Yes Yes  

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TFMaxIter TFTol TFAccelFact TFNoStop 
     

DEAD 10 0.01 1. No 
PDELTA 10 0.01 1. No 

 
 
Table:  Case - Moving Load 1 - Lane Assignments 

Table:  Case - Moving Load 1 - Lane Assignments 

Case AssignNum VehClass ScaleFactor MinLoaded MaxLoaded NumLanes 
       

LIVELOAD 1 HL93_LL 1. 1 4 6 

 
 
Table:  Case - Moving Load 2 - Lanes Loaded 

Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 
   

LIVELOAD 1 LTLANE1 
LIVELOAD 1 LTLANE1C 
LIVELOAD 1 LTLANE2 
LIVELOAD 1 RGTLANE1 
LIVELOAD 1 RGTLANE1C 
LIVELOAD 1 RGTLANE2 

 
 
Table:  Case - Moving Load 3 - MultiLane Factors 

Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLanes ScaleFactor 
   

LIVELOAD 1 1.2 
LIVELOAD 2 1. 
LIVELOAD 3 0.85 
LIVELOAD 4 0.65 
LIVELOAD 5 0.65 
LIVELOAD 6 0.65 
LIVELOAD 7 0.75 
LIVELOAD 8 0.75 
LIVELOAD 9 0.75 
LIVELOAD 10 0.75 
LIVELOAD 11 0.75 
LIVELOAD 12 0.75 
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Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLanes ScaleFactor 
   

LIVELOAD 13 0.75 
LIVELOAD 14 0.75 
LIVELOAD 15 0.75 
LIVELOAD 16 0.75 
LIVELOAD 17 0.75 
LIVELOAD 18 0.75 
LIVELOAD 19 0.75 
LIVELOAD 20 0.75 
LIVELOAD 21 0.75 
LIVELOAD 22 0.75 
LIVELOAD 23 0.75 
LIVELOAD 24 0.75 
LIVELOAD 25 0.75 
LIVELOAD 26 0.75 
LIVELOAD 27 0.75 
LIVELOAD 28 0.75 
LIVELOAD 29 0.75 
LIVELOAD 30 0.75 
LIVELOAD 31 0.75 
LIVELOAD 32 0.75 
LIVELOAD 33 0.75 
LIVELOAD 34 0.75 
LIVELOAD 35 0.75 
LIVELOAD 36 0.75 
LIVELOAD 37 0.75 
LIVELOAD 38 0.75 
LIVELOAD 39 0.75 
LIVELOAD 40 0.75 
LIVELOAD 41 0.75 

 
 
Section 3  City Island Modal Analysis Results 

Table:  Modal Load Participation Ratios 

Table:  Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 
   Percent Percent 

MODAL Acceleration UX 99.9687 89.4368 
MODAL Acceleration UY 99.9055 62.4317 
MODAL Acceleration UZ 98.4484 45.4058 

 
 
Table:  Modal Participation Factors, Part 1 of 2 

Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNum Period UX UY UZ RX 
   Sec Kip-ft Kip-ft Kip-ft Kip-ft 

MODAL   0. 0. -7.908153 1.978E-09 0.006413 
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Table:  Modal Participation Factors, Part 2 of 2 

Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-ft Kip-ft Kip-ft-s2 Kip-ft 

MODAL   0.000229 345.436956 0. 0. 

 
 
Table:  Modal Periods And Frequencies 

Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 
   Sec Cyc/sec rad/sec rad2/sec2 

MODAL   0. 0.0000E+00 0.0000E+00 0.0000E+00 

 
 
Table:  Program Control, Part 1 of 2 

Table:  Program Control, Part 1 of 2 

ProgramNa
me 

Version ProgLevel LicenseNum LicenseOS LicenseSC LicenseHT CurrUnits 

        

SAP2000 18.1.1 Advanced 2010*1GRW
HLW4599V5

FQ 

No No No Kip, ft, F 

 
 
Table:  Program Control, Part 2 of 2 

Table:  Program Control, Part 2 of 2 

SteelCode ConcCode AlumCode ColdCode RegenHinge 
     

AISC360-
05/IBC2006 

ACI 318-08/IBC2009 AA-ASD 2000 AISI-ASD96 Yes 
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APPENDIX B 

B.  ANALYSIS OUTPUT FOR JEFFERSON BARRACKS BRIDGE 
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Section 1  Jefferson Barracks Bridge Analysis Input 

Table:  Material Properties 01 - General, Part 1 of 2 

Table:  Material Properties 01 - General, Part 1 of 2 

Material Type SymType TempDepen
d 

Color GUID 

      

35000psi Concrete Isotropic No Yellow  
4000Psi Concrete Isotropic No Yellow  

A416Gr270 Tendon Uniaxial No Blue  
A572Gr50 Steel Isotropic No Blue  
A615Gr60 Rebar Uniaxial No Gray8Dark  
A992Fy50 Steel Isotropic No Magenta  

ASTM 
A58G 

Steel Isotropic No Blue  

 
 
Table:  Material Properties 01 - General, Part 2 of 2 

Table:  Material Properties 01 - General, Part 2 of 2 

Material Notes 
  

35000psi Normalweight f'c = 4 ksi added 
12/27/2013 5:33:58 PM 

4000Psi Normalweight f'c = 4 ksi added 
12/27/2013 5:33:58 PM 

A416Gr270 ASTM A416 Grade 270 2/6/2016 
4:27:13 PM 

A572Gr50 ASTM A572 Grade 50 added 
12/27/2013 9:18:45 PM 

A615Gr60 ASTM A615 Grade 60 added 
12/28/2013 9:51:32 AM 

A992Fy50 ASTM A992 Fy=50 ksi added 
12/27/2013 5:33:58 PM 

ASTM 
A58G 

ASTM A36 added 12/28/2013 
1:03:46 PM 

 
 
Table:  Material Properties 02 - Basic Mechanical Properties 

Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

35000psi 1.5000E-01 4.6621E-03 145680. 60700. 0.2 5.5000E-06 
4000Psi 1.5000E-01 4.6621E-03 155740. 64891.67 0.2 5.5000E-06 

A416Gr270 4.9000E-01 1.5230E-02 4104000.   6.5000E-06 
A572Gr50 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
A615Gr60 4.9000E-01 1.5230E-02 4176000.   6.5000E-06 
A992Fy50 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

ASTM 
A58G 

4.9000E-01 1.5230E-02 3312000. 1273846.15 0.3 6.5000E-06 
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Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Material Fy Fu EffFy EffFu SSCurveOpt SSHysType SHard 
 Kip/ft2 Kip/ft2 Kip/ft2 Kip/ft2    

A572Gr50 7200. 9360. 7920. 10296. Simple Kinematic 0.015 
A992Fy50 7200. 9360. 7920. 10296. Simple Kinematic 0.015 

ASTM 
A58G 

21600. 31680. 21600. 31680. Simple Kinematic 0.02 

 
 
Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Material SMax SRup FinalSlope 
    

A572Gr50 0.11 0.17 -0.1 
A992Fy50 0.11 0.17 -0.1 

ASTM 
A58G 

0.14 0.2 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Material Fc LtWtConc SSCurveOpt SSHysType SFc SCap FinalSlope 
 Kip/ft2       

35000psi 504. No Mander Takeda 0.002219 0.005 -0.1 
4000Psi 576. No Mander Takeda 0.002219 0.005 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Table:  Material Properties 03b - Concrete 
Data, Part 2 of 2 

Material FAngle DAngle 
 Degrees Degrees 

35000psi 0. 0. 
4000Psi 0. 0. 

 
 
Table:  Frame Section Properties 01 - General, Part 1 of 8 

Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

ARIBL0U7 A572Gr50 SD Section    
ARIBU7U7P A572Gr50 SD Section    

Cable ASTM A58G General 1. 1.  
FLBML0 A572Gr50 I/Wide Flange 7.7708 2. 0.1667 
FLBML1 A572Gr50 Built Up I 6.6875 2. 0.16667 

FLBML2-L9 A572Gr50 Built Up I 6.6875 1.58333 0.16667 
FSEC1 A992Fy50 I/Wide Flange 1. 0.41667 0.03167 
LLBR A572Gr50 SD Section    

PBEAM 35000psi Rectangular 12. 11.29  
PCOLUMN 35000psi Rectangular 13.375 19.  

STRGR A572Gr50 I/Wide Flange 1. 0.4167 0.0317 
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Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

TGDRL0L2 A992Fy50 I/Wide Flange 12.4167 4. 0.2083 
TGDRL2L3 A992Fy50 I/Wide Flange 12.5 4. 0.25 
TGDRL3L4 A992Fy50 I/Wide Flange 12.5833 4. 0.2917 
TGDRL4L6 A992Fy50 I/Wide Flange 12.6667 4. 0.3333 
TGDRL6L7 A992Fy50 I/Wide Flange 12.5833 4. 0.2917 
TGDRl7l7P A992Fy50 I/Wide Flange 12.5 4. 0.25 
ULBRU10 A572Gr50 SD Section    
ULBRU2 A572Gr50 SD Section    

ULBRU2P A572Gr50 SD Section    
ULBRU3 A572Gr50 SD Section    

ULBRU3P A572Gr50 SD Section    
ULBRU4 A572Gr50 SD Section    

ULBRU4P A572Gr50 SD Section    
ULBRU5 A572Gr50 SD Section    

ULBRU5P A572Gr50 SD Section    
ULBRU6 A572Gr50 SD Section    

ULBRU6P A572Gr50 SD Section    
ULBRU7 A572Gr50 SD Section    

ULBRU7P A572Gr50 SD Section    
ULBRU8 A572Gr50 SD Section    

ULBRU8P A572Gr50 SD Section    
ULBRU9 A572Gr50 SD Section    

ULBRU9P A572Gr50 SD Section    
W30X108 A572Gr50 I/Wide Flange 2.48333 0.875 0.06333 
W30X116 A572Gr50 I/Wide Flange 2.5 0.875 0.07083 
W30X124 A572Gr50 I/Wide Flange 2.51667 0.875 0.0775 

 
 
Table:  Frame Section Properties 01 - General, Part 2 of 8 

Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

ARIBL0U7    2.9297 24.591521 15.632105 
ARIBU7U7P    2.4457 20.451794 13.058811 

Cable    0.0753 0.000902 0.000451 
FLBML0 0.0625 2. 0.1667 1.1316 0.006454 11.783232 
FLBML1 0.0625 2. 0.16667 1.0638 0.006363 8.424631 

FLBML2-L9 0.0625 1.58333 0.16667 0.9249 0.005077 6.947876 
FSEC1 0.02083 0.41667 0.03167 0.0459 0.000011 0.007615 
LLBR    0.2642 0.00022 0.094972 

PBEAM    135.48 2567.16248 1625.76 
PCOLUMN    254.125 8570.65956 3788.381673 

STRGR 0.0208 0.4167 0.0317 0.0459 0.000011 0.007619 
TGDRL0L2 0.0833 4. 0.2083 2.666 0.025612 74.093685 
TGDRL2L3 0.0833 4. 0.25 2.9996 0.042328 87.036867 
TGDRL3L4 0.0833 4. 0.2917 3.3332 0.065449 100.15352 
TGDRL4L6 0.0833 4. 0.3333 3.666 0.095855 113.418547 
TGDRL6L7 0.0833 4. 0.2917 3.3332 0.065449 100.15352 
TGDRl7l7P 0.0833 4. 0.25 2.9996 0.042328 87.036867 
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Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

ULBRU10    2.0703 15.469086 10.728447 
ULBRU2    2.2344 19.383695 12.011948 

ULBRU2P    2.2344 19.383695 12.011948 
ULBRU3    2.1797 18.057961 11.584114 

ULBRU3P    2.1797 18.057961 11.584114 
ULBRU4    2.125 16.752549 11.156281 

ULBRU4P    2.125 16.752549 11.156281 
ULBRU5    2.125 16.752549 11.156281 

ULBRU5P    2.125 16.752549 11.156281 
ULBRU6    2.0703 15.469086 10.728447 

ULBRU6P    2.0703 15.469086 10.728447 
ULBRU7    2.0703 15.469086 10.728447 

ULBRU7P    2.0703 15.469086 10.728447 
ULBRU8    2.0703 15.469086 10.728447 

ULBRU8P    2.0703 15.469086 10.728447 
ULBRU9    2.0703 15.469086 10.728447 

ULBRU9P    2.0703 15.469086 10.728447 
W30X108 0.04542 0.875 0.06333 0.2201 0.000241 0.215567 
W30X116 0.04708 0.875 0.07083 0.2375 0.00031 0.237751 
W30X124 0.04875 0.875 0.0775 0.2535 0.000385 0.258488 

 
 
Table:  Frame Section Properties 01 - General, Part 3 of 8 

Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

ARIBL0U7 17.392731 0. 1.4093 1.5068 5.466966 5.565674 
ARIBU7U7P 14.532555 0. 1.1718 1.2533 4.583714 4.650418 

Cable 0.000451 0. 0.0678 0.0678 1. 1. 
FLBML0 0.222418 0. 0.4857 0.5557 3.032695 0.222418 
FLBML1 0.222351 0. 0.418 0.5556 2.519516 0.222351 

FLBML2-L9 0.110388 0. 0.418 0.4398 2.07787 0.139438 
FSEC1 0.000382 0. 0.0208 0.022 0.01523 0.001836 
LLBR 0.060936 0. 0.0693 0.1532 0.134619 0.081247 

PBEAM 1439.069689 0. 112.9 112.9 270.96 254.9282 
PCOLUMN 7644.927083 0. 211.7708 211.7708 566.486979 804.729167 

STRGR 0.000383 0. 0.0208 0.022 0.015238 0.001838 
TGDRL0L2 2.222445 0. 1.0343 1.3887 11.934521 1.111222 
TGDRL2L3 2.667245 0. 1.0413 1.6667 13.925899 1.333622 
TGDRL3L4 3.112045 0. 1.0482 1.9447 15.918483 1.556022 
TGDRL4L6 3.555778 0. 1.0551 2.222 17.908144 1.777889 
TGDRL6L7 3.112045 0. 1.0482 1.9447 15.918483 1.556022 
TGDRl7l7P 2.667245 0. 1.0413 1.6667 13.925899 1.333622 
ULBRU10 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
ULBRU2 14.099183 0. 1.054 1.1658 4.223982 4.394551 

ULBRU2P 14.099183 0. 1.054 1.1658 4.223982 4.394551 
ULBRU3 12.648153 0. 1.0529 1.1129 4.073535 4.130009 

ULBRU3P 12.648153 0. 1.0529 1.1129 4.073535 4.130009 
ULBRU4 11.289834 0. 1.0518 1.06 3.923088 3.8708 
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Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

ULBRU4P 11.289834 0. 1.0518 1.06 3.923088 3.8708 
ULBRU5 11.289834 0. 1.0518 1.06 3.923088 3.8708 

ULBRU5P 11.289834 0. 1.0518 1.06 3.923088 3.8708 
ULBRU6 10.021903 0. 1.0505 1.0069 3.772641 3.616927 

ULBRU6P 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
ULBRU7 10.021903 0. 1.0505 1.0069 3.772641 3.616927 

ULBRU7P 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
ULBRU8 10.021903 0. 1.0505 1.0069 3.772641 3.616927 

ULBRU8P 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
ULBRU9 10.021903 0. 1.0505 1.0069 3.772641 3.616927 

ULBRU9P 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
W30X108 0.007041 0. 0.1128 0.0924 0.173611 0.016093 
W30X116 0.007909 0. 0.1177 0.1033 0.190201 0.018078 
W30X124 0.008729 0. 0.1227 0.113 0.205421 0.019951 

 
 
Table:  Frame Section Properties 01 - General, Part 4 of 8 

Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

ARIBL0U7 6.239319 6.542969 2.30993 2.43654  No 
ARIBU7U7P 5.211323 5.465495 2.31071 2.43762  No 

Cable 1. 1. 1. 1. 0. No 
FLBML0 3.399503 0.340663 3.22685 0.44333  No 
FLBML1 2.804477 0.339539 2.81414 0.45718  No 

FLBML2-L9 2.351642 0.215117 2.74079 0.34547  No 
FSEC1 0.017346 0.00285 0.4073 0.09128  No 
LLBR 0.152414 0.102704 0.59952 0.48022  No 

PBEAM 406.44 382.3923 3.4641 3.25914  Yes 
PCOLUMN 849.730469 1207.09375 3.86103 5.48483  Yes 

STRGR 0.017352 0.002853 0.40742 0.09134  No 
TGDRL0L2 13.170889 1.687217 5.27181 0.91303  No 
TGDRL2L3 15.2488 2.020817 5.38666 0.94297  No 
TGDRL3L4 17.340589 2.354416 5.48154 0.96626  No 
TGDRL4L6 19.441739 2.687217 5.56218 0.98485  No 
TGDRL6L7 17.340589 2.354416 5.48154 0.96626  No 
TGDRl7l7P 15.2488 2.020817 5.38666 0.94297  No 
ULBRU10 4.324097 4.194906 2.27641 2.20017  No 
ULBRU2 4.782959 5.136556 2.31862 2.512  No 

ULBRU2P 4.782959 5.136556 2.31862 2.512  No 
ULBRU3 4.630005 4.814697 2.30534 2.40889  No 

ULBRU3P 4.630005 4.814697 2.30534 2.40889  No 
ULBRU4 4.477051 4.500814 2.29129 2.30496  No 

ULBRU4P 4.477051 4.500814 2.29129 2.30496  No 
ULBRU5 4.477051 4.500814 2.29129 2.30496  No 

ULBRU5P 4.477051 4.500814 2.29129 2.30496  No 
ULBRU6 4.324097 4.194906 2.27641 2.20017  No 

ULBRU6P 4.324097 4.194906 2.27641 2.20017  No 
ULBRU7 4.324097 4.194906 2.27641 2.20017  No 
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Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

ULBRU7P 4.324097 4.194906 2.27641 2.20017  No 
ULBRU8 4.324097 4.194906 2.27641 2.20017  No 

ULBRU8P 4.324097 4.194906 2.27641 2.20017  No 
ULBRU9 4.324097 4.194906 2.27641 2.20017  No 

ULBRU9P 4.324097 4.194906 2.27641 2.20017  No 
W30X108 0.200231 0.025405 0.98956 0.17884  No 
W30X116 0.21875 0.028472 1.00053 0.18249  No 
W30X124 0.236111 0.03125 1.00984 0.18557  No 

 
 
Table:  Frame Section Properties 01 - General, Part 5 of 8 

Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

ARIBL0U7 No 8421631 2617.96 81.37 No 1. 
ARIBU7U7P No 8421631 926.384 28.79 No 1. 

Cable No Red 165.378 5.14 No 1. 
FLBML0 No Green 89.386 2.78 No 1. 
FLBML1 No Gray8Dark 84.028 2.61 No 1. 

FLBML2-L9 No Green 620.985 19.3 No 1. 
FSEC1 No Magenta 0. 0. No 1. 
LLBR No 13619151 301.96 9.39 No 1. 

PBEAM No Blue 2519.928 78.32 No 1. 
PCOLUMN No Cyan 5997.345 186.4 No 1. 

STRGR No 4210816 0. 0. No 1. 
TGDRL0L2 No Blue 391.144 12.16 No 1. 
TGDRL2L3 No Blue 345.232 10.73 No 1. 
TGDRL3L4 No Blue 383.814 11.93 No 1. 
TGDRL4L6 No Blue 844.802 26.26 No 1. 
TGDRL6L7 No Blue 384.222 11.94 No 1. 
TGDRl7l7P No Blue 1037.552 32.25 No 1. 
ULBRU10 No Red 62.896 1.95 No 1. 
ULBRU2 No Red 67.88 2.11 No 1. 

ULBRU2P No Red 67.88 2.11 No 1. 
ULBRU3 No Red 66.219 2.06 No 1. 

ULBRU3P No Magenta 66.219 2.06 No 1. 
ULBRU4 No Red 64.558 2.01 No 1. 

ULBRU4P No Red 64.558 2.01 No 1. 
ULBRU5 No Red 64.558 2.01 No 1. 

ULBRU5P No Red 64.558 2.01 No 1. 
ULBRU6 No Red 62.896 1.95 No 1. 

ULBRU6P No Red 62.896 1.95 No 1. 
ULBRU7 No Red 62.896 1.95 No 1. 

ULBRU7P No Red 62.896 1.95 No 1. 
ULBRU8 No Red 62.896 1.95 No 1. 

ULBRU8P No Red 62.896 1.95 No 1. 
ULBRU9 No Red 62.896 1.95 No 1. 

ULBRU9P No Red 62.896 1.95 No 1. 
W30X108 No 4210816 0. 0. Yes 1. 
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Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

W30X116 No 4227327 950.019 29.53 Yes 1. 
W30X124 No Orange 0. 0. Yes 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 6 of 8 

Table:  Frame Section Properties 01 - General, Part 6 of 8 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

ARIBL0U7 1. 1. 1. 1. 1. 1.3 
ARIBU7U7P 1. 1. 1. 1. 1. 1.3 

Cable 1. 1. 1. 1. 1. 1. 
FLBML0 1. 1. 1. 1. 1. 1.3 
FLBML1 1. 1. 1. 1. 1. 1.3 

FLBML2-L9 1. 1. 1. 1. 1. 1.3 
FSEC1 1. 1. 1. 1. 1. 1. 
LLBR 1. 1. 1. 1. 1. 1. 

PBEAM 1. 1. 1. 1. 1. 1. 
PCOLUMN 1. 1. 1. 1. 1. 1. 

STRGR 1. 1. 1. 1. 1. 1.1 
TGDRL0L2 1. 1. 1. 1. 1. 1.2 
TGDRL2L3 1. 1. 1. 1. 1. 1.2 
TGDRL3L4 1. 1. 1. 1. 1. 1.2 
TGDRL4L6 1. 1. 1. 1. 1. 1.2 
TGDRL6L7 1. 1. 1. 1. 1. 1.2 
TGDRl7l7P 1. 1. 1. 1. 1. 1.2 
ULBRU10 1. 1. 1. 1. 1. 1. 
ULBRU2 1. 1. 1. 1. 1. 1. 

ULBRU2P 1. 1. 1. 1. 1. 1. 
ULBRU3 1. 1. 1. 1. 1. 1. 

ULBRU3P 1. 1. 1. 1. 1. 1. 
ULBRU4 1. 1. 1. 1. 1. 1. 

ULBRU4P 1. 1. 1. 1. 1. 1. 
ULBRU5 1. 1. 1. 1. 1. 1. 

ULBRU5P 1. 1. 1. 1. 1. 1. 
ULBRU6 1. 1. 1. 1. 1. 1. 

ULBRU6P 1. 1. 1. 1. 1. 1. 
ULBRU7 1. 1. 1. 1. 1. 1. 

ULBRU7P 1. 1. 1. 1. 1. 1. 
ULBRU8 1. 1. 1. 1. 1. 1. 

ULBRU8P 1. 1. 1. 1. 1. 1. 
ULBRU9 1. 1. 1. 1. 1. 1. 

ULBRU9P 1. 1. 1. 1. 1. 1. 
W30X108 1. 1. 1. 1. 1. 1.2 
W30X116 1. 1. 1. 1. 1. 1.3 
W30X124 1. 1. 1. 1. 1. 1.2 

 
 



www.manaraa.com

210 
 

Table:  Frame Section Properties 01 - General, Part 7 of 8 

Table:  Frame Section Properties 01 - General, Part 7 of 8 

SectionName WMod SectInFile FileName GUID 
     

ARIBL0U7 1.3    
ARIBU7U7P 1.3    

Cable 1.    
FLBML0 1.3    
FLBML1 1.3    

FLBML2-L9 1.3    
FSEC1 1.    
LLBR 1.    

PBEAM 1.    
PCOLUMN 1.    

STRGR 1.1    
TGDRL0L2 1.2    
TGDRL2L3 1.2    
TGDRL3L4 1.2    
TGDRL4L6 1.2    
TGDRL6L7 1.2    
TGDRl7l7P 1.2    
ULBRU10 1.    
ULBRU2 1.    

ULBRU2P 1.    
ULBRU3 1.    

ULBRU3P 1.    
ULBRU4 1.    

ULBRU4P 1.    
ULBRU5 1.    

ULBRU5P 1.    
ULBRU6 1.    

ULBRU6P 1.    
ULBRU7 1.    

ULBRU7P 1.    
ULBRU8 1.    

ULBRU8P 1.    
ULBRU9 1.    

ULBRU9P 1.    
W30X108 1.2 W30X108 c:\program files (x86)\computers 

and structures\sap2000 16\aisc13.pro 
 

W30X116 1.3 W30X116 c:\program files (x86)\computers 
and structures\sap2000 16\aisc13.pro 

 

W30X124 1.2 W30X124 c:\program files (x86)\computers 
and structures\sap2000 16\aisc13.pro 

 

 
 
Table:  Frame Section Properties 01 - General, Part 8 of 8 

Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

ARIBL0U7 Added 12/28/2013 5:08:03 PM 
ARIBU7U7P Added 12/28/2013 5:14:13 PM 
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Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

Cable Added 5/30/2016 11:02:21 AM 
FLBML0 Added 12/27/2013 9:11:58 PM 
FLBML1 Added 12/27/2013 9:19:14 PM 

FLBML2-L9 Added 12/27/2013 9:20:57 PM 
FSEC1 Added 12/27/2013 7:24:42 PM 
LLBR Added 12/28/2013 9:50:48 AM 

PBEAM Added 4/24/2016 8:49:51 PM 
PCOLUMN Added 4/24/2016 8:55:48 PM 

STRGR Added 10/3/2014 4:09:14 PM 
TGDRL0L2 Added 12/28/2013 4:08:24 PM 
TGDRL2L3 Added 12/28/2013 4:22:30 PM 
TGDRL3L4 Added 12/28/2013 4:24:00 PM 
TGDRL4L6 Added 12/28/2013 4:50:43 PM 
TGDRL6L7 Added 12/28/2013 4:53:15 PM 
TGDRl7l7P Added 12/28/2013 4:54:43 PM 
ULBRU10 Added 12/28/2013 12:52:46 PM 
ULBRU2 Added 12/28/2013 10:46:07 AM 

ULBRU2P Added 12/28/2013 12:59:27 PM 
ULBRU3 Added 12/28/2013 12:02:41 PM 

ULBRU3P Added 12/28/2013 12:58:52 PM 
ULBRU4 Added 12/28/2013 12:11:04 PM 

ULBRU4P Added 12/28/2013 12:58:20 PM 
ULBRU5 Added 12/28/2013 12:30:59 PM 

ULBRU5P Added 12/28/2013 12:57:53 PM 
ULBRU6 Added 12/28/2013 12:43:28 PM 

ULBRU6P Added 12/28/2013 12:57:18 PM 
ULBRU7 Added 12/28/2013 12:47:49 PM 

ULBRU7P Added 12/28/2013 12:56:04 PM 
ULBRU8 Added 12/28/2013 12:49:16 PM 

ULBRU8P Added 12/28/2013 12:55:31 PM 
ULBRU9 Added 12/28/2013 12:50:54 PM 

ULBRU9P Added 12/28/2013 12:54:31 PM 
W30X108 Imported 10/4/2014 12:09:11 PM 

from AISC13.pro 
W30X116 Imported 10/4/2014 12:10:07 PM 

from AISC13.pro 
W30X124 Imported 10/4/2014 12:10:40 PM 

from AISC13.pro 

 
 
Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

SectionNam
e 

RebarMatL RebarMatC ReinfConfig LatReinf Cover NumBars3D
ir 

NumBars2D
ir 

     ft   

PBEAM A615Gr60 A615Gr60 Rectangular Ties 0.125 3 3 
PCOLUMN A615Gr60 A615Gr60 Rectangular Ties 0.125 3 3 
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Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

SectionNam
e 

BarSizeL BarSizeC SpacingC NumCBars2 NumCBars3 ReinfType 

   ft    

PBEAM #9 #4 0.5 3 3 Design 
PCOLUMN #9 #4 0.5 3 3 Design 

 
 
Table:  Frame Section Properties 07 - Built Up I, Part 1 of 2 

Table:  Frame Section Properties 07 - Built Up I, Part 1 of 2 

SectionNam
e 

ItemType ISection FyTF FyW FyBF Material 

   Kip/ft2 Kip/ft2 Kip/ft2  

FLBML1 Web     A572Gr50 
FLBML1 Top Cover Plate     A572Gr50 
FLBML1 Bottom Cover Plate     A572Gr50 

FLBML2-L9 Web     A572Gr50 
FLBML2-L9 Top Cover Plate     A572Gr50 
FLBML2-L9 Bottom Cover Plate     A572Gr50 

 
 
Table:  Frame Section Properties 07 - Built Up I, Part 2 of 2 

Table:  Frame Section Properties 07 - Built 
Up I, Part 2 of 2 

SectionNam
e 

Width Thick 

 ft ft 

FLBML1 6.35417 0.0625 
FLBML1 2. 0.16667 
FLBML1 2. 0.16667 

FLBML2-L9 6.35417 0.0625 
FLBML2-L9 1.58333 0.16667 
FLBML2-L9 1.58333 0.16667 

 
 
Table:  Link Property Definitions 01 - General, Part 1 of 3 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Link LinkType Mass Weight RotInert1 RotInert2 RotInert3 
  Kip-s2/ft Kip Kip-ft-s2 Kip-ft-s2 Kip-ft-s2 

P12EXP Linear 0. 0. 0. 0. 0. 
P13FIX Linear 0. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 2 of 3 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Link DefLength DefArea PDM2I PDM2J PDM3I PDM3J 
 ft ft2     

P12EXP 1. 1. 0. 0. 0. 0. 
P13FIX 1. 1. 0. 0. 0. 0. 
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Table:  Link Property Definitions 01 - General, Part 3 of 3 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Link Color GUID Notes 
    

P12EXP Magenta  Added 4/24/2016 9:09:32 PM 
P13FIX Magenta  Added 4/24/2016 9:09:32 PM 

 
 
Table:  Link Property Definitions 02 - Linear 

Table:  Link Property Definitions 02 - Linear 

Link DOF Fixed TransKE RotKE TransCE RotCE DJ 
   Kip/ft Kip-ft/rad Kip-s/ft Kip-ft-s/rad ft 

P12EXP U1 No 100000.  0.   
P12EXP U2 No 100.  0.  0. 
P12EXP U3 No 100000.  0.  0. 
P12EXP R1 No  0.  0.  
P12EXP R2 No  0.  0.  
P12EXP R3 No  0.  0.  
P13FIX U1 No 100000.  0.   
P13FIX U2 No 100000.  0.  0. 
P13FIX U3 No 100000.  0.  0. 
P13FIX R1 No  0.  0.  
P13FIX R2 No  0.  0.  
P13FIX R3 No  0.  0.  

 
 
Section 2  Jefferson Barracks Bridge Load Data 

Table:  Load Case Definitions, Part 1 of 3 

Table:  Load Case Definitions, Part 1 of 3 

Case Type InitialCond ModalCase BaseCase MassSource DesTypeOpt 
       

DEAD NonStatic Zero    Prog Det 
MODAL LinModal DEAD    Prog Det 

LIVELOAD LinMoving Zero    Prog Det 
PDELTA NonStatic Zero    Prog Det 

BUCKLING
_DEAD 

LinBuckling PDELTA    Prog Det 

 
 
Table:  Load Case Definitions, Part 2 of 3 

Table:  Load Case Definitions, Part 2 of 3 

Case DesignType DesActOpt DesignAct AutoType RunCase CaseStatus 
       

DEAD DEAD Prog Det Non-
Composite 

None Yes Finished 

MODAL OTHER Prog Det Other None Yes Finished 
LIVELOAD VEHICLE 

LIVE 
Prog Det Short-Term 

Composite 
None Yes Finished 

PDELTA DEAD Prog Det Non-
Composite 

None No Not Run 

BUCKLING
_DEAD 

DEAD Prog Det Other None No Not Run 
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Table:  Load Case Definitions, Part 3 of 3 

Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

DEAD   
MODAL   

LIVELOAD   
PDELTA   

BUCKLING
_DEAD 

  

 
 
Table:  Case - Static 1 - Load Assignments 

Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 
    

DEAD Load pattern DEAD 1. 
PDELTA Load pattern DEAD 1. 

 
 
Table:  Case - Static 2 - Nonlinear Load Application 

Table:  Case - Static 2 - Nonlinear Load Application 

Case LoadApp MonitorDOF MonitorJt 
    

DEAD Full Load U1 10 
PDELTA Full Load U1 10 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Case Unloading GeoNonLin ResultsSave MaxTotal MaxNull 
      

DEAD Unload Entire None Final State 200 50 
PDELTA Unload Entire Large Displ Final State 200 50 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Case MaxIterCS MaxIterNR ItConvTol UseEvStep EvLumpTol LSPerIter 
       

DEAD 10 40 1.0000E-04 Yes 0.01 20 
PDELTA 10 40 1.0000E-04 Yes 0.01 20 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Case LSTol LSStepFact StageSave StageMinIns StageMinTD 
      

DEAD 0.1 1.618    
PDELTA 0.1 1.618    
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Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Case FrameTC FrameHinge CableTC LinkTC LinkOther TimeDepMa
t 

       

DEAD Yes Yes Yes Yes Yes  
PDELTA Yes Yes Yes Yes Yes  

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TFMaxIter TFTol TFAccelFact TFNoStop 
     

DEAD 10 0.01 1. No 
PDELTA 10 0.01 1. No 

 
 
Table:  Case - Moving Load 1 - Lane Assignments 

Table:  Case - Moving Load 1 - Lane Assignments 

Case Assign
Num 

VehClass ScaleFactor MinLoaded MaxLoaded NumLane
s 

       

LIVELOAD 1 HS20LOADING 1. 0 4 9 

 
 
Table:  Case - Moving Load 2 - Lanes Loaded 

Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 
   

LIVELOAD 1 CENLANE1 
LIVELOAD 1 CENTLANE2 
LIVELOAD 1 LTLANE1 
LIVELOAD 1 LTLANE2 
LIVELOAD 1 LTLANE21 
LIVELOAD 1 RGTLANE21 
LIVELOAD 1 RGTLANE22 
LIVELOAD 1 RTLANE1 
LIVELOAD 1 RTLANE2 

 
 
Table:  Case - Moving Load 3 - MultiLane Factors 

Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 1 1. 
LIVELOAD 2 1. 
LIVELOAD 3 0.9 
LIVELOAD 4 0.75 
LIVELOAD 5 0.75 
LIVELOAD 6 0.75 
LIVELOAD 7 0.75 
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Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 8 0.75 
LIVELOAD 9 0.75 

 
 
Table:  Case - Modal 1 - General, Part 1 of 2 

Table:  Case - Modal 1 - General, Part 1 of 2 

Case ModeType MaxNumMo
des 

MinNumMo
des 

EigenShift EigenCutoff EigenTol 

    Cyc/sec Cyc/sec  

MODAL Eigen 30 1 0.0000E+00 0.0000E+00 1.0000E-09 

 
 
Table:  Case - Modal 1 - General, Part 2 of 2 

Table:  Case - Modal 1 - General, 
Part 2 of 2 

Case AutoShift 
  

MODAL Yes 

Section 3  Jefferson Barracks Bridge Modal Analysis Output 

Table:  Modal Load Participation Ratios 

Table:  Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 
   Percent Percent 

MODAL Acceleration UX 99.8176 92.331 
MODAL Acceleration UY 99.8753 76.9187 
MODAL Acceleration UZ 98.5532 42.9878 

 
 
Table:  Modal Participating Mass Ratios, Part 1 of 3 

Table:  Modal Participating Mass Ratios, Part 1 of 3 

OutputCase StepTyp
e 

StepNum Period UX UY UZ SumUX 

   Sec     

MODAL   0. 0. 2.290E-05 1.559E-13 0. 

 
 
Table:  Modal Participating Mass Ratios, Part 2 of 3 

Table:  Modal Participating Mass Ratios, Part 2 of 3 

OutputCase StepType StepNu
m 

SumUY SumUZ RX RY RZ 

        

MODAL   2.290E-05 1.559E-13 3.064E-05 8.288E-16 0.00862 
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Table:  Modal Participating Mass Ratios, Part 3 of 3 

Table:  Modal Participating Mass Ratios, Part 3 of 3 

OutputCase StepType StepNum SumRX SumRY SumRZ 
      

MODAL   3.064E-05 8.288E-16 0.00862 

 
Table:  Modal Participation Factors, Part 1 of 2 

Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNum Period UX UY UZ RX 
   Sec Kip-ft Kip-ft Kip-ft Kip-ft 

MODAL   0. 0. 0.394208 -0.000012 -0.172041 

 
 
Table:  Modal Participation Factors, Part 2 of 2 

Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-ft Kip-ft Kip-ft-s2 Kip-ft 

MODAL   0.000057 -1098.69344 0. 0. 

 
 
Table:  Modal Periods And Frequencies 

Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 
   Sec Cyc/sec rad/sec rad2/sec2 

MODAL   0. 0.0000E+00 0.0000E+00 0.0000E+00 

 
 
Table:  Program Control, Part 1 of 2 

Table:  Program Control, Part 1 of 2 

ProgramNa
me 

Version ProgLevel LicenseNum LicenseOS LicenseSC LicenseH
T 

CurrUnits 

        

SAP2000 18.1.1 Advanced 2010*1GR
WHLW4599

V5FQ 

No No No Kip, ft, F 

 
 
Table:  Program Control, Part 2 of 2 

Table:  Program Control, Part 2 of 2 

SteelCode ConcCode AlumCode ColdCode RegenHinge 
     

AISC360-05/IBC2006 ACI 318-08/IBC2009 AA-ASD 2000 AISI-ASD96 Yes 
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Section 1  Jefferson Barracks Bridge Analysis Input 

Table:  Material Properties 01 - General, Part 1 of 2 

Table:  Material Properties 01 - General, Part 1 of 2 

Material Type SymType TempDepen
d 

Color GUID 

      

3500psi Concrete Isotropic No Yellow  
4000Psi Concrete Isotropic No Yellow  

A416Gr270 Tendon Uniaxial No Blue  
A572Gr50 Steel Isotropic No Blue  
A615Gr60 Rebar Uniaxial No Gray8Dark  
A992Fy50 Steel Isotropic No Magenta  

ASTM 
A58G 

Steel Isotropic No Blue  

 
 
Table:  Material Properties 01 - General, Part 2 of 2 

Table:  Material Properties 01 - General, Part 2 of 2 

Material Notes 
  

3500psi Normalweight f'c = 4 ksi added 
12/27/2013 5:33:58 PM 

4000Psi Normalweight f'c = 4 ksi added 
12/27/2013 5:33:58 PM 

A416Gr270 ASTM A416 Grade 270 2/6/2016 
4:27:13 PM 

A572Gr50 ASTM A572 Grade 50 added 
12/27/2013 9:18:45 PM 

A615Gr60 ASTM A615 Grade 60 added 
12/28/2013 9:51:32 AM 

A992Fy50 ASTM A992 Fy=50 ksi added 
12/27/2013 5:33:58 PM 

ASTM 
A58G 

ASTM A36 added 12/28/2013 
1:03:46 PM 

 
 
Table:  Material Properties 02 - Basic Mechanical Properties 

Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

3500psi 1.5000E-01 4.6621E-03 631270. 263029.17 0.2 5.5000E-06 
4000Psi 1.5000E-01 4.6621E-03 674855. 281189.58 0.2 5.5000E-06 

A416Gr270 4.9000E-01 1.5230E-02 4104000.   6.5000E-06 
A572Gr50 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
A615Gr60 4.9000E-01 1.5230E-02 4176000.   6.5000E-06 
A992Fy50 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

ASTM 
A58G 

4.9000E-01 1.5230E-02 3312000. 1273846.15 0.3 6.5000E-06 
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Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Material Fy Fu EffFy EffFu SSCurveOpt SSHysType SHard 
 Kip/ft2 Kip/ft2 Kip/ft2 Kip/ft2    

A572Gr50 7200. 9360. 7920. 10296. Simple Kinematic 0.015 
A992Fy50 7200. 9360. 7920. 10296. Simple Kinematic 0.015 

ASTM 
A58G 

21600. 31680. 21600. 31680. Simple Kinematic 0.02 

 
 
Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Material SMax SRup FinalSlope 
    

A572Gr50 0.11 0.17 -0.1 
A992Fy50 0.11 0.17 -0.1 

ASTM 
A58G 

0.14 0.2 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Material Fc LtWtConc SSCurveOpt SSHysType SFc SCap FinalSlope 
 Kip/ft2       

3500psi 655. No Mander Takeda 0.002219 0.005 -0.1 
4000Psi 749. No Mander Takeda 0.002219 0.005 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Table:  Material Properties 03b - Concrete 
Data, Part 2 of 2 

Material FAngle DAngle 
 Degrees Degrees 

3500psi 0. 0. 
4000Psi 0. 0. 

 
 
Table:  Frame Section Properties 01 - General, Part 1 of 8 

Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

ARIBL0U7 A572Gr50 SD Section    
ARIBU7U7P A572Gr50 SD Section    

Cable ASTM A58G General 1. 1.  
FLBML0 A572Gr50 I/Wide Flange 7.7708 2. 0.1667 
FLBML1 A572Gr50 Built Up I 6.6875 2. 0.16667 

FLBML2-L9 A572Gr50 Built Up I 6.6875 1.58333 0.16667 
FSEC1 A992Fy50 I/Wide Flange 1. 0.41667 0.03167 
LLBR A572Gr50 SD Section    

PBEAM 3500psi Rectangular 12. 11.29  
PCOLUMN 3500psi Rectangular 13.375 19.  

STRGR A572Gr50 I/Wide Flange 1. 0.4167 0.0317 
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Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

TGDRL0L2 A992Fy50 I/Wide Flange 12.4167 4. 0.2083 
TGDRL2L3 A992Fy50 I/Wide Flange 12.5 4. 0.25 
TGDRL3L4 A992Fy50 I/Wide Flange 12.5833 4. 0.2917 
TGDRL4L6 A992Fy50 I/Wide Flange 12.6667 4. 0.3333 
TGDRL6L7 A992Fy50 I/Wide Flange 12.5833 4. 0.2917 
TGDRl7l7P A992Fy50 I/Wide Flange 12.5 4. 0.25 
ULBRU10 A572Gr50 SD Section    
ULBRU2 A572Gr50 SD Section    

ULBRU2P A572Gr50 SD Section    
ULBRU3 A572Gr50 SD Section    

ULBRU3P A572Gr50 SD Section    
ULBRU4 A572Gr50 SD Section    

ULBRU4P A572Gr50 SD Section    
ULBRU5 A572Gr50 SD Section    

ULBRU5P A572Gr50 SD Section    
ULBRU6 A572Gr50 SD Section    

ULBRU6P A572Gr50 SD Section    
ULBRU7 A572Gr50 SD Section    

ULBRU7P A572Gr50 SD Section    
ULBRU8 A572Gr50 SD Section    

ULBRU8P A572Gr50 SD Section    
ULBRU9 A572Gr50 SD Section    

ULBRU9P A572Gr50 SD Section    
W30X108 A572Gr50 I/Wide Flange 2.48333 0.875 0.06333 
W30X116 A572Gr50 I/Wide Flange 2.5 0.875 0.07083 
W30X124 A572Gr50 I/Wide Flange 2.51667 0.875 0.0775 

 
 
Table:  Frame Section Properties 01 - General, Part 2 of 8 

Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

ARIBL0U7    2.9297 24.591521 15.632105 
ARIBU7U7P    2.4457 20.451794 13.058811 

Cable    0.0753 0.000902 0.000451 
FLBML0 0.0625 2. 0.1667 1.1316 0.006454 11.783232 
FLBML1 0.0625 2. 0.16667 1.0638 0.006363 8.424631 

FLBML2-L9 0.0625 1.58333 0.16667 0.9249 0.005077 6.947876 
FSEC1 0.02083 0.41667 0.03167 0.0459 0.000011 0.007615 
LLBR    0.2642 0.00022 0.094972 

PBEAM    135.48 2567.16248 1625.76 
PCOLUMN    254.125 8570.65956 3788.381673 

STRGR 0.0208 0.4167 0.0317 0.0459 0.000011 0.007619 
TGDRL0L2 0.0833 4. 0.2083 2.666 0.025612 74.093685 
TGDRL2L3 0.0833 4. 0.25 2.9996 0.042328 87.036867 
TGDRL3L4 0.0833 4. 0.2917 3.3332 0.065449 100.15352 
TGDRL4L6 0.0833 4. 0.3333 3.666 0.095855 113.418547 
TGDRL6L7 0.0833 4. 0.2917 3.3332 0.065449 100.15352 
TGDRl7l7P 0.0833 4. 0.25 2.9996 0.042328 87.036867 
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Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

ULBRU10    2.0703 15.469086 10.728447 
ULBRU2    2.2344 19.383695 12.011948 

ULBRU2P    2.2344 19.383695 12.011948 
ULBRU3    2.1797 18.057961 11.584114 

ULBRU3P    2.1797 18.057961 11.584114 
ULBRU4    2.125 16.752549 11.156281 

ULBRU4P    2.125 16.752549 11.156281 
ULBRU5    2.125 16.752549 11.156281 

ULBRU5P    2.125 16.752549 11.156281 
ULBRU6    2.0703 15.469086 10.728447 

ULBRU6P    2.0703 15.469086 10.728447 
ULBRU7    2.0703 15.469086 10.728447 

ULBRU7P    2.0703 15.469086 10.728447 
ULBRU8    2.0703 15.469086 10.728447 

ULBRU8P    2.0703 15.469086 10.728447 
ULBRU9    2.0703 15.469086 10.728447 

ULBRU9P    2.0703 15.469086 10.728447 
W30X108 0.04542 0.875 0.06333 0.2201 0.000241 0.215567 
W30X116 0.04708 0.875 0.07083 0.2375 0.00031 0.237751 
W30X124 0.04875 0.875 0.0775 0.2535 0.000385 0.258488 

 
 
Table:  Frame Section Properties 01 - General, Part 3 of 8 

Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

ARIBL0U7 17.392731 0. 1.4093 1.5068 5.466966 5.565674 
ARIBU7U7P 14.532555 0. 1.1718 1.2533 4.583714 4.650418 

Cable 0.000451 0. 0.0678 0.0678 1. 1. 
FLBML0 0.222418 0. 0.4857 0.5557 3.032695 0.222418 
FLBML1 0.222351 0. 0.418 0.5556 2.519516 0.222351 

FLBML2-L9 0.110388 0. 0.418 0.4398 2.07787 0.139438 
FSEC1 0.000382 0. 0.0208 0.022 0.01523 0.001836 
LLBR 0.060936 0. 0.0693 0.1532 0.134619 0.081247 

PBEAM 1439.069689 0. 112.9 112.9 270.96 254.9282 
PCOLUMN 7644.927083 0. 211.7708 211.7708 566.486979 804.729167 

STRGR 0.000383 0. 0.0208 0.022 0.015238 0.001838 
TGDRL0L2 2.222445 0. 1.0343 1.3887 11.934521 1.111222 
TGDRL2L3 2.667245 0. 1.0413 1.6667 13.925899 1.333622 
TGDRL3L4 3.112045 0. 1.0482 1.9447 15.918483 1.556022 
TGDRL4L6 3.555778 0. 1.0551 2.222 17.908144 1.777889 
TGDRL6L7 3.112045 0. 1.0482 1.9447 15.918483 1.556022 
TGDRl7l7P 2.667245 0. 1.0413 1.6667 13.925899 1.333622 
ULBRU10 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
ULBRU2 14.099183 0. 1.054 1.1658 4.223982 4.394551 

ULBRU2P 14.099183 0. 1.054 1.1658 4.223982 4.394551 
ULBRU3 12.648153 0. 1.0529 1.1129 4.073535 4.130009 

ULBRU3P 12.648153 0. 1.0529 1.1129 4.073535 4.130009 
ULBRU4 11.289834 0. 1.0518 1.06 3.923088 3.8708 
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Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

ULBRU4P 11.289834 0. 1.0518 1.06 3.923088 3.8708 
ULBRU5 11.289834 0. 1.0518 1.06 3.923088 3.8708 

ULBRU5P 11.289834 0. 1.0518 1.06 3.923088 3.8708 
ULBRU6 10.021903 0. 1.0505 1.0069 3.772641 3.616927 

ULBRU6P 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
ULBRU7 10.021903 0. 1.0505 1.0069 3.772641 3.616927 

ULBRU7P 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
ULBRU8 10.021903 0. 1.0505 1.0069 3.772641 3.616927 

ULBRU8P 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
ULBRU9 10.021903 0. 1.0505 1.0069 3.772641 3.616927 

ULBRU9P 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
W30X108 0.007041 0. 0.1128 0.0924 0.173611 0.016093 
W30X116 0.007909 0. 0.1177 0.1033 0.190201 0.018078 
W30X124 0.008729 0. 0.1227 0.113 0.205421 0.019951 

 
 
Table:  Frame Section Properties 01 - General, Part 4 of 8 

Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

ARIBL0U7 6.239319 6.542969 2.30993 2.43654  No 
ARIBU7U7P 5.211323 5.465495 2.31071 2.43762  No 

Cable 1. 1. 1. 1. 0. No 
FLBML0 3.399503 0.340663 3.22685 0.44333  No 
FLBML1 2.804477 0.339539 2.81414 0.45718  No 

FLBML2-L9 2.351642 0.215117 2.74079 0.34547  No 
FSEC1 0.017346 0.00285 0.4073 0.09128  No 
LLBR 0.152414 0.102704 0.59952 0.48022  No 

PBEAM 406.44 382.3923 3.4641 3.25914  Yes 
PCOLUMN 849.730469 1207.09375 3.86103 5.48483  Yes 

STRGR 0.017352 0.002853 0.40742 0.09134  No 
TGDRL0L2 13.170889 1.687217 5.27181 0.91303  No 
TGDRL2L3 15.2488 2.020817 5.38666 0.94297  No 
TGDRL3L4 17.340589 2.354416 5.48154 0.96626  No 
TGDRL4L6 19.441739 2.687217 5.56218 0.98485  No 
TGDRL6L7 17.340589 2.354416 5.48154 0.96626  No 
TGDRl7l7P 15.2488 2.020817 5.38666 0.94297  No 
ULBRU10 4.324097 4.194906 2.27641 2.20017  No 
ULBRU2 4.782959 5.136556 2.31862 2.512  No 

ULBRU2P 4.782959 5.136556 2.31862 2.512  No 
ULBRU3 4.630005 4.814697 2.30534 2.40889  No 

ULBRU3P 4.630005 4.814697 2.30534 2.40889  No 
ULBRU4 4.477051 4.500814 2.29129 2.30496  No 

ULBRU4P 4.477051 4.500814 2.29129 2.30496  No 
ULBRU5 4.477051 4.500814 2.29129 2.30496  No 

ULBRU5P 4.477051 4.500814 2.29129 2.30496  No 
ULBRU6 4.324097 4.194906 2.27641 2.20017  No 

ULBRU6P 4.324097 4.194906 2.27641 2.20017  No 
ULBRU7 4.324097 4.194906 2.27641 2.20017  No 
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Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

ULBRU7P 4.324097 4.194906 2.27641 2.20017  No 
ULBRU8 4.324097 4.194906 2.27641 2.20017  No 

ULBRU8P 4.324097 4.194906 2.27641 2.20017  No 
ULBRU9 4.324097 4.194906 2.27641 2.20017  No 

ULBRU9P 4.324097 4.194906 2.27641 2.20017  No 
W30X108 0.200231 0.025405 0.98956 0.17884  No 
W30X116 0.21875 0.028472 1.00053 0.18249  No 
W30X124 0.236111 0.03125 1.00984 0.18557  No 

 
 
Table:  Frame Section Properties 01 - General, Part 5 of 8 

Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

ARIBL0U7 No 8421631 2617.96 81.37 No 1. 
ARIBU7U7P No 8421631 926.384 28.79 No 1. 

Cable No Red 165.378 5.14 No 1. 
FLBML0 No Green 89.386 2.78 No 1. 
FLBML1 No Gray8Dark 84.028 2.61 No 1. 

FLBML2-L9 No Green 620.985 19.3 No 1. 
FSEC1 No Magenta 0. 0. No 1. 
LLBR No 13619151 301.96 9.39 No 1. 

PBEAM No Blue 2519.928 78.32 No 1. 
PCOLUMN No Cyan 5997.345 186.4 No 1. 

STRGR No 4210816 0. 0. No 1. 
TGDRL0L2 No Blue 391.144 12.16 No 1. 
TGDRL2L3 No Blue 345.232 10.73 No 1. 
TGDRL3L4 No Blue 383.814 11.93 No 1. 
TGDRL4L6 No Blue 844.802 26.26 No 1. 
TGDRL6L7 No Blue 384.222 11.94 No 1. 
TGDRl7l7P No Blue 1037.552 32.25 No 1. 
ULBRU10 No Red 62.896 1.95 No 1. 
ULBRU2 No Red 67.88 2.11 No 1. 

ULBRU2P No Red 67.88 2.11 No 1. 
ULBRU3 No Red 66.219 2.06 No 1. 

ULBRU3P No Magenta 66.219 2.06 No 1. 
ULBRU4 No Red 64.558 2.01 No 1. 

ULBRU4P No Red 64.558 2.01 No 1. 
ULBRU5 No Red 64.558 2.01 No 1. 

ULBRU5P No Red 64.558 2.01 No 1. 
ULBRU6 No Red 62.896 1.95 No 1. 

ULBRU6P No Red 62.896 1.95 No 1. 
ULBRU7 No Red 62.896 1.95 No 1. 

ULBRU7P No Red 62.896 1.95 No 1. 
ULBRU8 No Red 62.896 1.95 No 1. 

ULBRU8P No Red 62.896 1.95 No 1. 
ULBRU9 No Red 62.896 1.95 No 1. 

ULBRU9P No Red 62.896 1.95 No 1. 
W30X108 No 4210816 0. 0. Yes 1. 
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Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

W30X116 No 4227327 950.019 29.53 Yes 1. 
W30X124 No Orange 0. 0. Yes 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 6 of 8 

Table:  Frame Section Properties 01 - General, Part 6 of 8 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

ARIBL0U7 1. 1. 1. 1. 1. 1.3 
ARIBU7U7P 1. 1. 1. 1. 1. 1.3 

Cable 1. 1. 1. 1. 1. 1. 
FLBML0 1. 1. 1. 1. 1. 1.3 
FLBML1 1. 1. 1. 1. 1. 1.3 

FLBML2-L9 1. 1. 1. 1. 1. 1.3 
FSEC1 1. 1. 1. 1. 1. 1. 
LLBR 1. 1. 1. 1. 1. 1. 

PBEAM 1. 1. 1. 1. 1. 1. 
PCOLUMN 1. 1. 1. 1. 1. 1. 

STRGR 1. 1. 1. 1. 1. 1.1 
TGDRL0L2 1. 1. 1. 1. 1. 1.2 
TGDRL2L3 1. 1. 1. 1. 1. 1.2 
TGDRL3L4 1. 1. 1. 1. 1. 1.2 
TGDRL4L6 1. 1. 1. 1. 1. 1.2 
TGDRL6L7 1. 1. 1. 1. 1. 1.2 
TGDRl7l7P 1. 1. 1. 1. 1. 1.2 
ULBRU10 1. 1. 1. 1. 1. 1. 
ULBRU2 1. 1. 1. 1. 1. 1. 

ULBRU2P 1. 1. 1. 1. 1. 1. 
ULBRU3 1. 1. 1. 1. 1. 1. 

ULBRU3P 1. 1. 1. 1. 1. 1. 
ULBRU4 1. 1. 1. 1. 1. 1. 

ULBRU4P 1. 1. 1. 1. 1. 1. 
ULBRU5 1. 1. 1. 1. 1. 1. 

ULBRU5P 1. 1. 1. 1. 1. 1. 
ULBRU6 1. 1. 1. 1. 1. 1. 

ULBRU6P 1. 1. 1. 1. 1. 1. 
ULBRU7 1. 1. 1. 1. 1. 1. 

ULBRU7P 1. 1. 1. 1. 1. 1. 
ULBRU8 1. 1. 1. 1. 1. 1. 

ULBRU8P 1. 1. 1. 1. 1. 1. 
ULBRU9 1. 1. 1. 1. 1. 1. 

ULBRU9P 1. 1. 1. 1. 1. 1. 
W30X108 1. 1. 1. 1. 1. 1.2 
W30X116 1. 1. 1. 1. 1. 1.3 
W30X124 1. 1. 1. 1. 1. 1.2 
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Table:  Frame Section Properties 01 - General, Part 7 of 8 

Table:  Frame Section Properties 01 - General, Part 7 of 8 

SectionName WMod SectInFile FileName GUID 
     

ARIBL0U7 1.3    
ARIBU7U7P 1.3    

Cable 1.    
FLBML0 1.3    
FLBML1 1.3    

FLBML2-L9 1.3    
FSEC1 1.    
LLBR 1.    

PBEAM 1.    
PCOLUMN 1.    

STRGR 1.1    
TGDRL0L2 1.2    
TGDRL2L3 1.2    
TGDRL3L4 1.2    
TGDRL4L6 1.2    
TGDRL6L7 1.2    
TGDRl7l7P 1.2    
ULBRU10 1.    
ULBRU2 1.    

ULBRU2P 1.    
ULBRU3 1.    

ULBRU3P 1.    
ULBRU4 1.    

ULBRU4P 1.    
ULBRU5 1.    

ULBRU5P 1.    
ULBRU6 1.    

ULBRU6P 1.    
ULBRU7 1.    

ULBRU7P 1.    
ULBRU8 1.    

ULBRU8P 1.    
ULBRU9 1.    

ULBRU9P 1.    
W30X108 1.2 W30X108 c:\program files (x86)\computers 

and structures\sap2000 16\aisc13.pro 
 

W30X116 1.3 W30X116 c:\program files (x86)\computers 
and structures\sap2000 16\aisc13.pro 

 

W30X124 1.2 W30X124 c:\program files (x86)\computers 
and structures\sap2000 16\aisc13.pro 

 

 
 
Table:  Frame Section Properties 01 - General, Part 8 of 8 

Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

ARIBL0U7 Added 12/28/2013 5:08:03 PM 
ARIBU7U7P Added 12/28/2013 5:14:13 PM 
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Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

Cable Added 5/30/2016 11:02:21 AM 
FLBML0 Added 12/27/2013 9:11:58 PM 
FLBML1 Added 12/27/2013 9:19:14 PM 

FLBML2-L9 Added 12/27/2013 9:20:57 PM 
FSEC1 Added 12/27/2013 7:24:42 PM 
LLBR Added 12/28/2013 9:50:48 AM 

PBEAM Added 4/24/2016 8:49:51 PM 
PCOLUMN Added 4/24/2016 8:55:48 PM 

STRGR Added 10/3/2014 4:09:14 PM 
TGDRL0L2 Added 12/28/2013 4:08:24 PM 
TGDRL2L3 Added 12/28/2013 4:22:30 PM 
TGDRL3L4 Added 12/28/2013 4:24:00 PM 
TGDRL4L6 Added 12/28/2013 4:50:43 PM 
TGDRL6L7 Added 12/28/2013 4:53:15 PM 
TGDRl7l7P Added 12/28/2013 4:54:43 PM 
ULBRU10 Added 12/28/2013 12:52:46 PM 
ULBRU2 Added 12/28/2013 10:46:07 AM 

ULBRU2P Added 12/28/2013 12:59:27 PM 
ULBRU3 Added 12/28/2013 12:02:41 PM 

ULBRU3P Added 12/28/2013 12:58:52 PM 
ULBRU4 Added 12/28/2013 12:11:04 PM 

ULBRU4P Added 12/28/2013 12:58:20 PM 
ULBRU5 Added 12/28/2013 12:30:59 PM 

ULBRU5P Added 12/28/2013 12:57:53 PM 
ULBRU6 Added 12/28/2013 12:43:28 PM 

ULBRU6P Added 12/28/2013 12:57:18 PM 
ULBRU7 Added 12/28/2013 12:47:49 PM 

ULBRU7P Added 12/28/2013 12:56:04 PM 
ULBRU8 Added 12/28/2013 12:49:16 PM 

ULBRU8P Added 12/28/2013 12:55:31 PM 
ULBRU9 Added 12/28/2013 12:50:54 PM 

ULBRU9P Added 12/28/2013 12:54:31 PM 
W30X108 Imported 10/4/2014 12:09:11 PM 

from AISC13.pro 
W30X116 Imported 10/4/2014 12:10:07 PM 

from AISC13.pro 
W30X124 Imported 10/4/2014 12:10:40 PM 

from AISC13.pro 

 
 
Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

SectionNam
e 

RebarMatL RebarMatC ReinfConfig LatReinf Cover NumBars3D
ir 

NumBars2
Dir 

     ft   

PBEAM A615Gr60 A615Gr60 Rectangular Ties 0.125 3 3 
PCOLUMN A615Gr60 A615Gr60 Rectangular Ties 0.125 3 3 
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Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

SectionNam
e 

BarSizeL BarSizeC SpacingC NumCBars2 NumCBars3 ReinfType 

   ft    

PBEAM #9 #4 0.5 3 3 Design 
PCOLUMN #9 #4 0.5 3 3 Design 

 
 
Table:  Frame Section Properties 07 - Built Up I, Part 1 of 2 

Table:  Frame Section Properties 07 - Built Up I, Part 1 of 2 

SectionNam
e 

ItemType ISection FyTF FyW FyBF Material 

   Kip/ft2 Kip/ft2 Kip/ft2  

FLBML1 Web     A572Gr50 
FLBML1 Top Cover Plate     A572Gr50 
FLBML1 Bottom Cover Plate     A572Gr50 

FLBML2-L9 Web     A572Gr50 
FLBML2-L9 Top Cover Plate     A572Gr50 
FLBML2-L9 Bottom Cover Plate     A572Gr50 

 
 
Table:  Frame Section Properties 07 - Built Up I, Part 2 of 2 

Table:  Frame Section Properties 07 - Built 
Up I, Part 2 of 2 

SectionNam
e 

Width Thick 

 ft ft 

FLBML1 6.35417 0.0625 
FLBML1 2. 0.16667 
FLBML1 2. 0.16667 

FLBML2-L9 6.35417 0.0625 
FLBML2-L9 1.58333 0.16667 
FLBML2-L9 1.58333 0.16667 

 
 
Table:  Link Property Definitions 01 - General, Part 1 of 3 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Link LinkType Mass Weight RotInert1 RotInert2 RotInert3 
  Kip-s2/ft Kip Kip-ft-s2 Kip-ft-s2 Kip-ft-s2 

P12EXP Linear 0. 0. 0. 0. 0. 
P13FIX Linear 0. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 2 of 3 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Link DefLength DefArea PDM2I PDM2J PDM3I PDM3J 
 ft ft2     

P12EXP 1. 1. 0. 0. 0. 0. 
P13FIX 1. 1. 0. 0. 0. 0. 
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Table:  Link Property Definitions 01 - General, Part 3 of 3 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Link Color GUID Notes 
    

P12EXP Magenta  Added 4/24/2016 9:09:32 PM 
P13FIX Magenta  Added 4/24/2016 9:09:32 PM 

 
 
Table:  Link Property Definitions 02 - Linear 

Table:  Link Property Definitions 02 - Linear 

Link DOF Fixed TransKE RotKE TransCE RotCE DJ 
   Kip/ft Kip-ft/rad Kip-s/ft Kip-ft-s/rad ft 

P12EXP U1 No 100000.  0.   
P12EXP U2 No 100000.  0.  0. 
P12EXP U3 No 100000.  0.  0. 
P12EXP R1 No  0.  0.  
P12EXP R2 No  0.  0.  
P12EXP R3 No  0.  0.  
P13FIX U1 No 100000.  0.   
P13FIX U2 No 100000.  0.  0. 
P13FIX U3 No 100000.  0.  0. 
P13FIX R1 No  0.  0.  
P13FIX R2 No  0.  0.  
P13FIX R3 No  0.  0.  

 
 
Table:  Area Section Properties, Part 1 of 4 

Table:  Area Section Properties, Part 1 of 4 

Section Material MatAngle AreaType Type DrillDOF Thickness BendThic
k 

  Degrees    ft ft 

BRDECK 4000Psi 0. Shell Shell-Thin Yes 0.6667 0.6667 
P12SHAFT 3500psi 0. Shell Shell-Thick Yes 13.375 13.375 

 
 
Table:  Area Section Properties, Part 2 of 4 

Table:  Area Section Properties, Part 2 of 4 

Section Arc InComp CoordSys Color TotalWt TotalMass 
 Degrees    Kip Kip-s2/ft 

BRDECK    Magenta 4361.719 135.57 
P12SHAFT    Cyan 15921.6 494.86 

 
 
Table:  Area Section Properties, Part 3 of 4 

Table:  Area Section Properties, Part 3 of 4 

Section F11Mod F22Mod F12Mod M11Mod M22Mod M12Mod V13Mod 
        

BRDECK 1. 1. 1. 1. 1. 1. 1. 
P12SHAFT 1. 1. 1. 1. 1. 1. 1. 
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Table:  Area Section Properties, Part 4 of 4 

Table:  Area Section Properties, Part 4 of 4 

Section V23Mod MMod WMod GUID Notes 
      

BRDECK 1. 1. 1.  Added 3/9/2016 8:37:33 PM 
P12SHAFT 1. 1. 1.  Added 4/24/2016 9:05:45 PM 

 
 
Section 2  Jefferson Barracks Bridge Load Cases 

Table:  Load Case Definitions, Part 1 of 3 

Table:  Load Case Definitions, Part 1 of 3 

Case Type InitialCond ModalCase BaseCase MassSource DesTypeOpt 
       

DEAD NonStatic Zero    Prog Det 
MODAL LinModal DEAD    Prog Det 

LIVELOAD LinMoving Zero    Prog Det 
PDELTA NonStatic Zero    Prog Det 

BUCKLING
_DEAD 

LinBuckling PDELTA    Prog Det 

 
 
Table:  Load Case Definitions, Part 2 of 3 

Table:  Load Case Definitions, Part 2 of 3 

Case DesignType DesActOpt DesignAct AutoType RunCase CaseStatus 
       

DEAD DEAD Prog Det Non-
Composite 

None Yes Finished 

MODAL OTHER Prog Det Other None Yes Finished 
LIVELOAD VEHICLE 

LIVE 
Prog Det Short-Term 

Composite 
None Yes Finished 

PDELTA DEAD Prog Det Non-
Composite 

None No Not Run 

BUCKLING
_DEAD 

DEAD Prog Det Other None No Not Run 

 
 
Table:  Load Case Definitions, Part 3 of 3 

Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

DEAD   
MODAL   

LIVELOAD   
PDELTA   

BUCKLING
_DEAD 
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Table:  Case - Static 1 - Load Assignments 

Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 
    

DEAD Load pattern DEAD 1. 
PDELTA Load pattern DEAD 1. 

 
 
Table:  Case - Static 2 - Nonlinear Load Application 

Table:  Case - Static 2 - Nonlinear Load Application 

Case LoadApp MonitorDOF MonitorJt 
    

DEAD Full Load U1 10 
PDELTA Full Load U1 10 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Case Unloading GeoNonLin ResultsSave MaxTotal MaxNull 
      

DEAD Unload Entire None Final State 200 50 
PDELTA Unload Entire Large Displ Final State 200 50 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Case MaxIterCS MaxIterNR ItConvTol UseEvStep EvLumpTol LSPerIter 
       

DEAD 10 40 1.0000E-04 Yes 0.01 20 
PDELTA 10 40 1.0000E-04 Yes 0.01 20 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Case LSTol LSStepFact StageSave StageMinIns StageMinT
D 

      

DEAD 0.1 1.618    
PDELTA 0.1 1.618    

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Case FrameTC FrameHinge CableTC LinkTC LinkOther TimeDepMa
t 

       

DEAD Yes Yes Yes Yes Yes  
PDELTA Yes Yes Yes Yes Yes  
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Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TFMaxIter TFTol TFAccelFact TFNoStop 
     

DEAD 10 0.01 1. No 
PDELTA 10 0.01 1. No 

 
 
Table:  Case - Moving Load 1 - Lane Assignments 

Table:  Case - Moving Load 1 - Lane Assignments 

Case AssignNum VehClass ScaleFact
or 

MinLoaded MaxLoaded NumLanes 

       

LIVELOAD 1 HS20LOADING 1. 0 4 9 

 
 
Table:  Case - Moving Load 2 - Lanes Loaded 

Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 
   

LIVELOAD 1 CENLANE1 
LIVELOAD 1 CENTLANE2 
LIVELOAD 1 LTLANE1 
LIVELOAD 1 LTLANE2 
LIVELOAD 1 LTLANE21 
LIVELOAD 1 RGTLANE21 
LIVELOAD 1 RGTLANE22 
LIVELOAD 1 RTLANE1 
LIVELOAD 1 RTLANE2 

 
 
Table:  Case - Moving Load 3 - MultiLane Factors 

Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 1 1. 
LIVELOAD 2 1. 
LIVELOAD 3 0.9 
LIVELOAD 4 0.75 
LIVELOAD 5 0.75 
LIVELOAD 6 0.75 
LIVELOAD 7 0.75 
LIVELOAD 8 0.75 
LIVELOAD 9 0.75 
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Table:  Case - Modal 1 - General, Part 1 of 2 

Table:  Case - Modal 1 - General, Part 1 of 2 

Case ModeType MaxNumMo
des 

MinNumMo
des 

EigenShift EigenCutoff EigenTol 

    Cyc/sec Cyc/sec  

MODAL Eigen 30 1 0.0000E+00 0.0000E+00 1.0000E-09 

Table:  Case - Modal 1 - General, Part 2 of 2 

Table:  Case - Modal 1 - General, 
Part 2 of 2 

Case AutoShift 
  

MODAL Yes 

Section 3  Jefferson Barracks Bridge Modal Analysis Output 

Table:  Modal Load Participation Ratios 

Table:  Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 
   Percent Percent 

MODAL Acceleration UX 99.5384 88.7069 
MODAL Acceleration UY 99.5882 46.0817 
MODAL Acceleration UZ 99.2667 41.9053 

 
 
Table:  Modal Participating Mass Ratios, Part 1 of 3 

Table:  Modal Participating Mass Ratios, Part 1 of 3 

OutputCase StepType StepNum Period UX UY UZ SumUX 
   Sec     

MODAL   0. 0. 9.614E-06 1.462E-13 0. 

 
 
Table:  Modal Participating Mass Ratios, Part 2 of 3 

Table:  Modal Participating Mass Ratios, Part 2 of 3 

OutputCase StepType StepNum SumUY SumUZ RX RY RZ 
        

MODAL   9.614E-06 1.462E-13 0.002 4.504E-14 0.0001 

 
 
Table:  Modal Participating Mass Ratios, Part 3 of 3 

Table:  Modal Participating Mass Ratios, Part 3 of 3 

OutputCase StepType StepNum SumRX SumRY SumRZ 
      

MODAL   0.002 4.504E-14 0.0001 

 
 
Table:  Modal Participation Factors, Part 1 of 2 

Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNum Period UX UY UZ RX 
   Sec Kip-ft Kip-ft Kip-ft Kip-ft 

MODAL   0. 0. -0.113192 0.00001 1.389986 
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Table:  Modal Participation Factors, Part 2 of 2 

Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-ft Kip-ft Kip-ft-s2 Kip-ft 

MODAL   -0.000415 120.847864 0. 0. 

 
 
Table:  Modal Periods And Frequencies 

Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 
   Sec Cyc/sec rad/sec rad2/sec2 

MODAL   0. 0.0000E+00 0.0000E+00 0.0000E+00 

 
 
Table:  Program Control, Part 1 of 2 

Table:  Program Control, Part 1 of 2 

ProgramNa
me 

Version ProgLevel LicenseNum LicenseOS LicenseSC LicenseHT CurrU
nits 

        

SAP2000 18.1.1 Advanced 2010*1GR
WHLW4599

V5FQ 

No No No Kip, ft, 
F 

 
 
Table:  Program Control, Part 2 of 2 

Table:  Program Control, Part 2 of 2 

SteelCode ConcCode AlumCode ColdCode RegenHi
nge 

     

AISC360-05/IBC2006 ACI 318-08/IBC2009 AA-ASD 2000 AISI-ASD96 Yes 
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Section 1  Jefferson Barracks Bridge Analysis Input 

Table:  Material Properties 01 - General, Part 1 of 2 

Table:  Material Properties 01 - General, Part 1 of 2 

Material Type SymType TempDepen
d 

Color GUID 

      

35000psi Concrete Isotropic No Yellow  
4000Psi Concrete Isotropic No Yellow  

A416Gr270 Tendon Uniaxial No Blue  
A572Gr50 Steel Isotropic No Blue  
A615Gr60 Rebar Uniaxial No Gray8Dark  
A992Fy50 Steel Isotropic No Magenta  

ASTM 
A58G 

Steel Isotropic No Blue  

 
 
Table:  Material Properties 01 - General, Part 2 of 2 

Table:  Material Properties 01 - General, Part 2 of 2 

Material Notes 
  

35000psi Normalweight f'c = 4 ksi added 
12/27/2013 5:33:58 PM 

4000Psi Normalweight f'c = 4 ksi added 
12/27/2013 5:33:58 PM 

A416Gr270 ASTM A416 Grade 270 2/6/2016 
4:27:13 PM 

A572Gr50 ASTM A572 Grade 50 added 
12/27/2013 9:18:45 PM 

A615Gr60 ASTM A615 Grade 60 added 
12/28/2013 9:51:32 AM 

A992Fy50 ASTM A992 Fy=50 ksi added 
12/27/2013 5:33:58 PM 

ASTM 
A58G 

ASTM A36 added 12/28/2013 
1:03:46 PM 

 
 
Table:  Material Properties 02 - Basic Mechanical Properties 

Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

35000psi 1.5000E-01 4.6621E-03 145680. 60700. 0.2 5.5000E-06 
4000Psi 1.5000E-01 4.6621E-03 155740. 64891.67 0.2 5.5000E-06 

A416Gr270 4.9000E-01 1.5230E-02 4104000.   6.5000E-06 
A572Gr50 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
A615Gr60 4.9000E-01 1.5230E-02 4176000.   6.5000E-06 
A992Fy50 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

ASTM 
A58G 

4.9000E-01 1.5230E-02 3312000. 1273846.15 0.3 6.5000E-06 
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Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Material Fy Fu EffFy EffFu SSCurveOpt SSHysType SHard 
 Kip/ft2 Kip/ft2 Kip/ft2 Kip/ft2    

A572Gr50 7200. 9360. 7920. 10296. Simple Kinematic 0.015 
A992Fy50 7200. 9360. 7920. 10296. Simple Kinematic 0.015 

ASTM 
A58G 

21600. 31680. 21600. 31680. Simple Kinematic 0.02 

 
 
Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Material SMax SRup FinalSlope 
    

A572Gr50 0.11 0.17 -0.1 
A992Fy50 0.11 0.17 -0.1 

ASTM 
A58G 

0.14 0.2 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Material Fc LtWtConc SSCurveOpt SSHysType SFc SCap FinalSlope 
 Kip/ft2       

35000psi 504. No Mander Takeda 0.002219 0.005 -0.1 
4000Psi 576. No Mander Takeda 0.002219 0.005 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Table:  Material Properties 03b - Concrete 
Data, Part 2 of 2 

Material FAngle DAngle 
 Degrees Degrees 

35000psi 0. 0. 
4000Psi 0. 0. 

 
 
Table:  Frame Section Properties 01 - General, Part 1 of 8 

Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

ARIBL0U7 A572Gr50 SD Section    
ARIBU7U7P A572Gr50 SD Section    

Cable ASTM A58G General 1. 1.  
FLBML0 A572Gr50 I/Wide Flange 7.7708 2. 0.1667 
FLBML1 A572Gr50 Built Up I 6.6875 2. 0.16667 

FLBML2-L9 A572Gr50 Built Up I 6.6875 1.58333 0.16667 
FSEC1 A992Fy50 I/Wide Flange 1. 0.41667 0.03167 
LLBR A572Gr50 SD Section    

PBEAM 35000psi Rectangular 12. 11.29  
PCOLUMN 35000psi Rectangular 13.375 19.  

STRGR A572Gr50 I/Wide Flange 1. 0.4167 0.0317 
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Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

TGDRL0L2 A992Fy50 I/Wide Flange 12.4167 4. 0.2083 
TGDRL2L3 A992Fy50 I/Wide Flange 12.5 4. 0.25 
TGDRL3L4 A992Fy50 I/Wide Flange 12.5833 4. 0.2917 
TGDRL4L6 A992Fy50 I/Wide Flange 12.6667 4. 0.3333 
TGDRL6L7 A992Fy50 I/Wide Flange 12.5833 4. 0.2917 
TGDRl7l7P A992Fy50 I/Wide Flange 12.5 4. 0.25 
ULBRU10 A572Gr50 SD Section    
ULBRU2 A572Gr50 SD Section    

ULBRU2P A572Gr50 SD Section    
ULBRU3 A572Gr50 SD Section    

ULBRU3P A572Gr50 SD Section    
ULBRU4 A572Gr50 SD Section    

ULBRU4P A572Gr50 SD Section    
ULBRU5 A572Gr50 SD Section    

ULBRU5P A572Gr50 SD Section    
ULBRU6 A572Gr50 SD Section    

ULBRU6P A572Gr50 SD Section    
ULBRU7 A572Gr50 SD Section    

ULBRU7P A572Gr50 SD Section    
ULBRU8 A572Gr50 SD Section    

ULBRU8P A572Gr50 SD Section    
ULBRU9 A572Gr50 SD Section    

ULBRU9P A572Gr50 SD Section    
W30X108 A572Gr50 I/Wide Flange 2.48333 0.875 0.06333 
W30X116 A572Gr50 I/Wide Flange 2.5 0.875 0.07083 
W30X124 A572Gr50 I/Wide Flange 2.51667 0.875 0.0775 

 
 
Table:  Frame Section Properties 01 - General, Part 2 of 8 

Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

ARIBL0U7    2.9297 24.591521 15.632105 
ARIBU7U7P    2.4457 20.451794 13.058811 

Cable    0.0753 0.000902 0.000451 
FLBML0 0.0625 2. 0.1667 1.1316 0.006454 11.783232 
FLBML1 0.0625 2. 0.16667 1.0638 0.006363 8.424631 

FLBML2-L9 0.0625 1.58333 0.16667 0.9249 0.005077 6.947876 
FSEC1 0.02083 0.41667 0.03167 0.0459 0.000011 0.007615 
LLBR    0.2642 0.00022 0.094972 

PBEAM    135.48 2567.16248 1625.76 
PCOLUMN    254.125 8570.65956 3788.381673 

STRGR 0.0208 0.4167 0.0317 0.0459 0.000011 0.007619 
TGDRL0L2 0.0833 4. 0.2083 2.666 0.025612 74.093685 
TGDRL2L3 0.0833 4. 0.25 2.9996 0.042328 87.036867 
TGDRL3L4 0.0833 4. 0.2917 3.3332 0.065449 100.15352 
TGDRL4L6 0.0833 4. 0.3333 3.666 0.095855 113.418547 
TGDRL6L7 0.0833 4. 0.2917 3.3332 0.065449 100.15352 
TGDRl7l7P 0.0833 4. 0.25 2.9996 0.042328 87.036867 
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Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

ULBRU10    2.0703 15.469086 10.728447 
ULBRU2    2.2344 19.383695 12.011948 

ULBRU2P    2.2344 19.383695 12.011948 
ULBRU3    2.1797 18.057961 11.584114 

ULBRU3P    2.1797 18.057961 11.584114 
ULBRU4    2.125 16.752549 11.156281 

ULBRU4P    2.125 16.752549 11.156281 
ULBRU5    2.125 16.752549 11.156281 

ULBRU5P    2.125 16.752549 11.156281 
ULBRU6    2.0703 15.469086 10.728447 

ULBRU6P    2.0703 15.469086 10.728447 
ULBRU7    2.0703 15.469086 10.728447 

ULBRU7P    2.0703 15.469086 10.728447 
ULBRU8    2.0703 15.469086 10.728447 

ULBRU8P    2.0703 15.469086 10.728447 
ULBRU9    2.0703 15.469086 10.728447 

ULBRU9P    2.0703 15.469086 10.728447 
W30X108 0.04542 0.875 0.06333 0.2201 0.000241 0.215567 
W30X116 0.04708 0.875 0.07083 0.2375 0.00031 0.237751 
W30X124 0.04875 0.875 0.0775 0.2535 0.000385 0.258488 

 
 
Table:  Frame Section Properties 01 - General, Part 3 of 8 

Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

ARIBL0U7 17.392731 0. 1.4093 1.5068 5.466966 5.565674 
ARIBU7U7P 14.532555 0. 1.1718 1.2533 4.583714 4.650418 

Cable 0.000451 0. 0.0678 0.0678 1. 1. 
FLBML0 0.222418 0. 0.4857 0.5557 3.032695 0.222418 
FLBML1 0.222351 0. 0.418 0.5556 2.519516 0.222351 

FLBML2-L9 0.110388 0. 0.418 0.4398 2.07787 0.139438 
FSEC1 0.000382 0. 0.0208 0.022 0.01523 0.001836 
LLBR 0.060936 0. 0.0693 0.1532 0.134619 0.081247 

PBEAM 1439.069689 0. 112.9 112.9 270.96 254.9282 
PCOLUMN 7644.927083 0. 211.7708 211.7708 566.486979 804.729167 

STRGR 0.000383 0. 0.0208 0.022 0.015238 0.001838 
TGDRL0L2 2.222445 0. 1.0343 1.3887 11.934521 1.111222 
TGDRL2L3 2.667245 0. 1.0413 1.6667 13.925899 1.333622 
TGDRL3L4 3.112045 0. 1.0482 1.9447 15.918483 1.556022 
TGDRL4L6 3.555778 0. 1.0551 2.222 17.908144 1.777889 
TGDRL6L7 3.112045 0. 1.0482 1.9447 15.918483 1.556022 
TGDRl7l7P 2.667245 0. 1.0413 1.6667 13.925899 1.333622 
ULBRU10 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
ULBRU2 14.099183 0. 1.054 1.1658 4.223982 4.394551 

ULBRU2P 14.099183 0. 1.054 1.1658 4.223982 4.394551 
ULBRU3 12.648153 0. 1.0529 1.1129 4.073535 4.130009 

ULBRU3P 12.648153 0. 1.0529 1.1129 4.073535 4.130009 
ULBRU4 11.289834 0. 1.0518 1.06 3.923088 3.8708 
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Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

ULBRU4P 11.289834 0. 1.0518 1.06 3.923088 3.8708 
ULBRU5 11.289834 0. 1.0518 1.06 3.923088 3.8708 

ULBRU5P 11.289834 0. 1.0518 1.06 3.923088 3.8708 
ULBRU6 10.021903 0. 1.0505 1.0069 3.772641 3.616927 

ULBRU6P 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
ULBRU7 10.021903 0. 1.0505 1.0069 3.772641 3.616927 

ULBRU7P 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
ULBRU8 10.021903 0. 1.0505 1.0069 3.772641 3.616927 

ULBRU8P 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
ULBRU9 10.021903 0. 1.0505 1.0069 3.772641 3.616927 

ULBRU9P 10.021903 0. 1.0505 1.0069 3.772641 3.616927 
W30X108 0.007041 0. 0.1128 0.0924 0.173611 0.016093 
W30X116 0.007909 0. 0.1177 0.1033 0.190201 0.018078 
W30X124 0.008729 0. 0.1227 0.113 0.205421 0.019951 

 
 
Table:  Frame Section Properties 01 - General, Part 4 of 8 

Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

ARIBL0U7 6.239319 6.542969 2.30993 2.43654  No 
ARIBU7U7P 5.211323 5.465495 2.31071 2.43762  No 

Cable 1. 1. 1. 1. 0. No 
FLBML0 3.399503 0.340663 3.22685 0.44333  No 
FLBML1 2.804477 0.339539 2.81414 0.45718  No 

FLBML2-L9 2.351642 0.215117 2.74079 0.34547  No 
FSEC1 0.017346 0.00285 0.4073 0.09128  No 
LLBR 0.152414 0.102704 0.59952 0.48022  No 

PBEAM 406.44 382.3923 3.4641 3.25914  Yes 
PCOLUMN 849.730469 1207.09375 3.86103 5.48483  Yes 

STRGR 0.017352 0.002853 0.40742 0.09134  No 
TGDRL0L2 13.170889 1.687217 5.27181 0.91303  No 
TGDRL2L3 15.2488 2.020817 5.38666 0.94297  No 
TGDRL3L4 17.340589 2.354416 5.48154 0.96626  No 
TGDRL4L6 19.441739 2.687217 5.56218 0.98485  No 
TGDRL6L7 17.340589 2.354416 5.48154 0.96626  No 
TGDRl7l7P 15.2488 2.020817 5.38666 0.94297  No 
ULBRU10 4.324097 4.194906 2.27641 2.20017  No 
ULBRU2 4.782959 5.136556 2.31862 2.512  No 

ULBRU2P 4.782959 5.136556 2.31862 2.512  No 
ULBRU3 4.630005 4.814697 2.30534 2.40889  No 

ULBRU3P 4.630005 4.814697 2.30534 2.40889  No 
ULBRU4 4.477051 4.500814 2.29129 2.30496  No 

ULBRU4P 4.477051 4.500814 2.29129 2.30496  No 
ULBRU5 4.477051 4.500814 2.29129 2.30496  No 

ULBRU5P 4.477051 4.500814 2.29129 2.30496  No 
ULBRU6 4.324097 4.194906 2.27641 2.20017  No 

ULBRU6P 4.324097 4.194906 2.27641 2.20017  No 
ULBRU7 4.324097 4.194906 2.27641 2.20017  No 
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Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

ULBRU7P 4.324097 4.194906 2.27641 2.20017  No 
ULBRU8 4.324097 4.194906 2.27641 2.20017  No 

ULBRU8P 4.324097 4.194906 2.27641 2.20017  No 
ULBRU9 4.324097 4.194906 2.27641 2.20017  No 

ULBRU9P 4.324097 4.194906 2.27641 2.20017  No 
W30X108 0.200231 0.025405 0.98956 0.17884  No 
W30X116 0.21875 0.028472 1.00053 0.18249  No 
W30X124 0.236111 0.03125 1.00984 0.18557  No 

 
 
Table:  Frame Section Properties 01 - General, Part 5 of 8 

Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

ARIBL0U7 No 8421631 2617.96 81.37 No 1. 
ARIBU7U7P No 8421631 926.384 28.79 No 1. 

Cable No Red 165.378 5.14 No 1. 
FLBML0 No Green 89.386 2.78 No 1. 
FLBML1 No Gray8Dark 84.028 2.61 No 1. 

FLBML2-L9 No Green 620.985 19.3 No 1. 
FSEC1 No Magenta 0. 0. No 1. 
LLBR No 13619151 301.96 9.39 No 1. 

PBEAM No Blue 2519.928 78.32 No 1. 
PCOLUMN No Cyan 5997.345 186.4 No 1. 

STRGR No 4210816 0. 0. No 1. 
TGDRL0L2 No Blue 391.144 12.16 No 1. 
TGDRL2L3 No Blue 345.232 10.73 No 1. 
TGDRL3L4 No Blue 383.814 11.93 No 1. 
TGDRL4L6 No Blue 844.802 26.26 No 1. 
TGDRL6L7 No Blue 384.222 11.94 No 1. 
TGDRl7l7P No Blue 1037.552 32.25 No 1. 
ULBRU10 No Red 62.896 1.95 No 1. 
ULBRU2 No Red 67.88 2.11 No 1. 

ULBRU2P No Red 67.88 2.11 No 1. 
ULBRU3 No Red 66.219 2.06 No 1. 

ULBRU3P No Magenta 66.219 2.06 No 1. 
ULBRU4 No Red 64.558 2.01 No 1. 

ULBRU4P No Red 64.558 2.01 No 1. 
ULBRU5 No Red 64.558 2.01 No 1. 

ULBRU5P No Red 64.558 2.01 No 1. 
ULBRU6 No Red 62.896 1.95 No 1. 

ULBRU6P No Red 62.896 1.95 No 1. 
ULBRU7 No Red 62.896 1.95 No 1. 

ULBRU7P No Red 62.896 1.95 No 1. 
ULBRU8 No Red 62.896 1.95 No 1. 

ULBRU8P No Red 62.896 1.95 No 1. 
ULBRU9 No Red 62.896 1.95 No 1. 

ULBRU9P No Red 62.896 1.95 No 1. 
W30X108 No 4210816 0. 0. Yes 1. 
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Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

W30X116 No 4227327 950.019 29.53 Yes 1. 
W30X124 No Orange 0. 0. Yes 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 6 of 8 

Table:  Frame Section Properties 01 - General, Part 6 of 8 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

ARIBL0U7 1. 1. 1. 1. 1. 1.3 
ARIBU7U7P 1. 1. 1. 1. 1. 1.3 

Cable 1. 1. 1. 1. 1. 1. 
FLBML0 1. 1. 1. 1. 1. 1.3 
FLBML1 1. 1. 1. 1. 1. 1.3 

FLBML2-L9 1. 1. 1. 1. 1. 1.3 
FSEC1 1. 1. 1. 1. 1. 1. 
LLBR 1. 1. 1. 1. 1. 1. 

PBEAM 1. 1. 1. 1. 1. 1. 
PCOLUMN 1. 1. 1. 1. 1. 1. 

STRGR 1. 1. 1. 1. 1. 1.1 
TGDRL0L2 1. 1. 1. 1. 1. 1.2 
TGDRL2L3 1. 1. 1. 1. 1. 1.2 
TGDRL3L4 1. 1. 1. 1. 1. 1.2 
TGDRL4L6 1. 1. 1. 1. 1. 1.2 
TGDRL6L7 1. 1. 1. 1. 1. 1.2 
TGDRl7l7P 1. 1. 1. 1. 1. 1.2 
ULBRU10 1. 1. 1. 1. 1. 1. 
ULBRU2 1. 1. 1. 1. 1. 1. 

ULBRU2P 1. 1. 1. 1. 1. 1. 
ULBRU3 1. 1. 1. 1. 1. 1. 

ULBRU3P 1. 1. 1. 1. 1. 1. 
ULBRU4 1. 1. 1. 1. 1. 1. 

ULBRU4P 1. 1. 1. 1. 1. 1. 
ULBRU5 1. 1. 1. 1. 1. 1. 

ULBRU5P 1. 1. 1. 1. 1. 1. 
ULBRU6 1. 1. 1. 1. 1. 1. 

ULBRU6P 1. 1. 1. 1. 1. 1. 
ULBRU7 1. 1. 1. 1. 1. 1. 

ULBRU7P 1. 1. 1. 1. 1. 1. 
ULBRU8 1. 1. 1. 1. 1. 1. 

ULBRU8P 1. 1. 1. 1. 1. 1. 
ULBRU9 1. 1. 1. 1. 1. 1. 

ULBRU9P 1. 1. 1. 1. 1. 1. 
W30X108 1. 1. 1. 1. 1. 1.2 
W30X116 1. 1. 1. 1. 1. 1.3 
W30X124 1. 1. 1. 1. 1. 1.2 
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Table:  Frame Section Properties 01 - General, Part 7 of 8 

Table:  Frame Section Properties 01 - General, Part 7 of 8 

SectionName WMod SectInFile FileName GUID 
     

ARIBL0U7 1.3    
ARIBU7U7P 1.3    

Cable 1.    
FLBML0 1.3    
FLBML1 1.3    

FLBML2-L9 1.3    
FSEC1 1.    
LLBR 1.    

PBEAM 1.    
PCOLUMN 1.    

STRGR 1.1    
TGDRL0L2 1.2    
TGDRL2L3 1.2    
TGDRL3L4 1.2    
TGDRL4L6 1.2    
TGDRL6L7 1.2    
TGDRl7l7P 1.2    
ULBRU10 1.    
ULBRU2 1.    

ULBRU2P 1.    
ULBRU3 1.    

ULBRU3P 1.    
ULBRU4 1.    

ULBRU4P 1.    
ULBRU5 1.    

ULBRU5P 1.    
ULBRU6 1.    

ULBRU6P 1.    
ULBRU7 1.    

ULBRU7P 1.    
ULBRU8 1.    

ULBRU8P 1.    
ULBRU9 1.    

ULBRU9P 1.    
W30X108 1.2 W30X108 c:\program files (x86)\computers 

and structures\sap2000 16\aisc13.pro 
 

W30X116 1.3 W30X116 c:\program files (x86)\computers 
and structures\sap2000 16\aisc13.pro 

 

W30X124 1.2 W30X124 c:\program files (x86)\computers 
and structures\sap2000 16\aisc13.pro 

 

 
 
Table:  Frame Section Properties 01 - General, Part 8 of 8 

Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

ARIBL0U7 Added 12/28/2013 5:08:03 PM 
ARIBU7U7P Added 12/28/2013 5:14:13 PM 
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Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

Cable Added 5/30/2016 11:02:21 AM 
FLBML0 Added 12/27/2013 9:11:58 PM 
FLBML1 Added 12/27/2013 9:19:14 PM 

FLBML2-L9 Added 12/27/2013 9:20:57 PM 
FSEC1 Added 12/27/2013 7:24:42 PM 
LLBR Added 12/28/2013 9:50:48 AM 

PBEAM Added 4/24/2016 8:49:51 PM 
PCOLUMN Added 4/24/2016 8:55:48 PM 

STRGR Added 10/3/2014 4:09:14 PM 
TGDRL0L2 Added 12/28/2013 4:08:24 PM 
TGDRL2L3 Added 12/28/2013 4:22:30 PM 
TGDRL3L4 Added 12/28/2013 4:24:00 PM 
TGDRL4L6 Added 12/28/2013 4:50:43 PM 
TGDRL6L7 Added 12/28/2013 4:53:15 PM 
TGDRl7l7P Added 12/28/2013 4:54:43 PM 
ULBRU10 Added 12/28/2013 12:52:46 PM 
ULBRU2 Added 12/28/2013 10:46:07 AM 

ULBRU2P Added 12/28/2013 12:59:27 PM 
ULBRU3 Added 12/28/2013 12:02:41 PM 

ULBRU3P Added 12/28/2013 12:58:52 PM 
ULBRU4 Added 12/28/2013 12:11:04 PM 

ULBRU4P Added 12/28/2013 12:58:20 PM 
ULBRU5 Added 12/28/2013 12:30:59 PM 

ULBRU5P Added 12/28/2013 12:57:53 PM 
ULBRU6 Added 12/28/2013 12:43:28 PM 

ULBRU6P Added 12/28/2013 12:57:18 PM 
ULBRU7 Added 12/28/2013 12:47:49 PM 

ULBRU7P Added 12/28/2013 12:56:04 PM 
ULBRU8 Added 12/28/2013 12:49:16 PM 

ULBRU8P Added 12/28/2013 12:55:31 PM 
ULBRU9 Added 12/28/2013 12:50:54 PM 

ULBRU9P Added 12/28/2013 12:54:31 PM 
W30X108 Imported 10/4/2014 12:09:11 PM 

from AISC13.pro 
W30X116 Imported 10/4/2014 12:10:07 PM 

from AISC13.pro 
W30X124 Imported 10/4/2014 12:10:40 PM 

from AISC13.pro 

 
 
Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

SectionNam
e 

RebarMatL RebarMatC ReinfConfig LatRein
f 

Cover NumBars3D
ir 

NumBars
2Dir 

     ft   

PBEAM A615Gr60 A615Gr60 Rectangular Ties 0.125 3 3 
PCOLUMN A615Gr60 A615Gr60 Rectangular Ties 0.125 3 3 
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Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

SectionNam
e 

BarSizeL BarSizeC SpacingC NumCBars2 NumCBars3 ReinfType 

   ft    

PBEAM #9 #4 0.5 3 3 Design 
PCOLUMN #9 #4 0.5 3 3 Design 

 
 
Table:  Frame Section Properties 07 - Built Up I, Part 1 of 2 

Table:  Frame Section Properties 07 - Built Up I, Part 1 of 2 

SectionNam
e 

ItemType ISection FyTF FyW FyBF Material 

   Kip/ft2 Kip/ft2 Kip/ft2  

FLBML1 Web     A572Gr50 
FLBML1 Top Cover Plate     A572Gr50 
FLBML1 Bottom Cover Plate     A572Gr50 

FLBML2-L9 Web     A572Gr50 
FLBML2-L9 Top Cover Plate     A572Gr50 
FLBML2-L9 Bottom Cover Plate     A572Gr50 

 
 
Table:  Frame Section Properties 07 - Built Up I, Part 2 of 2 

Table:  Frame Section Properties 07 - Built 
Up I, Part 2 of 2 

SectionNam
e 

Width Thick 

 ft ft 

FLBML1 6.35417 0.0625 
FLBML1 2. 0.16667 
FLBML1 2. 0.16667 

FLBML2-L9 6.35417 0.0625 
FLBML2-L9 1.58333 0.16667 
FLBML2-L9 1.58333 0.16667 

 
 
Table:  Link Property Definitions 01 - General, Part 1 of 3 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Link LinkType Mass Weight RotInert1 RotInert2 RotInert3 
  Kip-s2/ft Kip Kip-ft-s2 Kip-ft-s2 Kip-ft-s2 

P12EXP Linear 0. 0. 0. 0. 0. 
P13FIX Linear 0. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 2 of 3 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Link DefLength DefArea PDM2I PDM2J PDM3I PDM3J 
 ft ft2     

P12EXP 1. 1. 0. 0. 0. 0. 
P13FIX 1. 1. 0. 0. 0. 0. 
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Table:  Link Property Definitions 01 - General, Part 3 of 3 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Link Color GUID Notes 
    

P12EXP Magenta  Added 4/24/2016 9:09:32 PM 
P13FIX Magenta  Added 4/24/2016 9:09:32 PM 

 
 
Table:  Link Property Definitions 02 - Linear 

Table:  Link Property Definitions 02 - Linear 

Link DOF Fixed TransKE RotKE TransCE RotCE DJ 
   Kip/ft Kip-ft/rad Kip-s/ft Kip-ft-s/rad ft 

P12EXP U1 No 100000.  0.   
P12EXP U2 No 100.  0.  0. 
P12EXP U3 No 100000.  0.  0. 
P12EXP R1 No  0.  0.  
P12EXP R2 No  0.  0.  
P12EXP R3 No  0.  0.  
P13FIX U1 No 100000.  0.   
P13FIX U2 No 100000.  0.  0. 
P13FIX U3 No 100000.  0.  0. 
P13FIX R1 No  0.  0.  
P13FIX R2 No  0.  0.  
P13FIX R3 No  0.  0.  

 
 
Section 2  Jefferson Barracks Bridge Load Data 

Table:  Load Case Definitions, Part 1 of 3 

Table:  Load Case Definitions, Part 1 of 3 

Case Type InitialCond ModalCase BaseCase MassSource DesTypeOpt 
       

DEAD NonStatic Zero    Prog Det 
MODAL LinModal DEAD    Prog Det 

LIVELOAD LinMoving DEAD    Prog Det 
PDELTA NonStatic Zero    Prog Det 

BUCKLING
_DEAD 

LinBuckling PDELTA    Prog Det 

 
 
Table:  Load Case Definitions, Part 2 of 3 

Table:  Load Case Definitions, Part 2 of 3 

Case DesignType DesActOpt DesignAct AutoType RunCase CaseStatus 
       

DEAD DEAD Prog Det Non-
Composite 

None Yes Finished 

MODAL OTHER Prog Det Other None Yes Finished 
LIVELOAD VEHICLE 

LIVE 
Prog Det Short-Term 

Composite 
None Yes Finished 

PDELTA DEAD Prog Det Non-
Composite 

None No Not Run 

BUCKLING
_DEAD 

DEAD Prog Det Other None No Not Run 
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Table:  Load Case Definitions, Part 3 of 3 

Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

DEAD   
MODAL   

LIVELOAD   
PDELTA   

BUCKLING
_DEAD 

  

 
 
Table:  Case - Static 1 - Load Assignments 

Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 
    

DEAD Load pattern DEAD 1. 
PDELTA Load pattern DEAD 1. 

 
 
Table:  Case - Static 2 - Nonlinear Load Application 

Table:  Case - Static 2 - Nonlinear Load Application 

Case LoadApp MonitorDOF MonitorJt 
    

DEAD Full Load U1 10 
PDELTA Full Load U1 10 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Case Unloading GeoNonLin ResultsSave MaxTotal MaxNull 
      

DEAD Unload Entire None Final State 200 50 
PDELTA Unload Entire Large Displ Final State 200 50 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Case MaxIterCS MaxIterNR ItConvTol UseEvStep EvLumpTol LSPerIter 
       

DEAD 10 40 1.0000E-04 Yes 0.01 20 
PDELTA 10 40 1.0000E-04 Yes 0.01 20 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Case LSTol LSStepFact StageSave StageMinIns StageMinTD 
      

DEAD 0.1 1.618    
PDELTA 0.1 1.618    
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Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Case FrameTC FrameHinge CableTC LinkTC LinkOther TimeDepMa
t 

       

DEAD Yes Yes Yes Yes Yes  
PDELTA Yes Yes Yes Yes Yes  

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TFMaxIter TFTol TFAccelFact TFNoStop 
     

DEAD 10 0.01 1. No 
PDELTA 10 0.01 1. No 

 
 
Table:  Case - Moving Load 1 - Lane Assignments 

Table:  Case - Moving Load 1 - Lane Assignments 

Case AssignNum VehClass ScaleFactor MinLoaded MaxLoaded NumLanes 
       

LIVELOAD 1 HL93_ALL 1. 0 4 9 

 
 
Table:  Case - Moving Load 2 - Lanes Loaded 

Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 
   

LIVELOAD 1 CENLANE1 
LIVELOAD 1 CENTLANE2 
LIVELOAD 1 LTLANE1 
LIVELOAD 1 LTLANE2 
LIVELOAD 1 LTLANE21 
LIVELOAD 1 RGTLANE21 
LIVELOAD 1 RGTLANE22 
LIVELOAD 1 RTLANE1 
LIVELOAD 1 RTLANE2 

 
 
Table:  Case - Moving Load 3 - MultiLane Factors 

Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 1 1.2 
LIVELOAD 2 1. 
LIVELOAD 3 0.85 
LIVELOAD 4 0.65 
LIVELOAD 5 0.65 
LIVELOAD 6 0.65 
LIVELOAD 7 0.65 
LIVELOAD 8 0.75 
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Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 9 0.75 

 
 
Table:  Case - Modal 1 - General, Part 1 of 2 

Table:  Case - Modal 1 - General, Part 1 of 2 

Case ModeType MaxNumMo
des 

MinNumMo
des 

EigenShift EigenCutoff EigenTol 

    Cyc/sec Cyc/sec  

MODAL Eigen 30 1 0.0000E+00 0.0000E+00 1.0000E-09 

 
 
Table:  Case - Modal 1 - General, Part 2 of 2 

Table:  Case - Modal 1 - General, 
Part 2 of 2 

Case AutoShift 
  

MODAL Yes 

Section 3  Jefferson Barracks Bridge Modal Analysis Output 

Table:  Modal Load Participation Ratios 

Table:  Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 
   Percent Percent 

MODAL Acceleration UX 99.8176 92.331 
MODAL Acceleration UY 99.8753 76.9187 
MODAL Acceleration UZ 98.5532 42.9878 

 
 
Table:  Modal Participating Mass Ratios, Part 1 of 3 

Table:  Modal Participating Mass Ratios, Part 1 of 3 

OutputCase StepType StepNum Period UX UY UZ SumUX 
   Sec     

MODAL   0. 0. 2.290E-05 1.559E-13 0. 

 
 
Table:  Modal Participating Mass Ratios, Part 2 of 3 

Table:  Modal Participating Mass Ratios, Part 2 of 3 

OutputCase StepType StepNum SumUY SumUZ RX RY RZ 
        

MODAL   2.290E-05 1.559E-13 3.064E-05 8.288E-16 0.00862 

 
 
Table:  Modal Participating Mass Ratios, Part 3 of 3 

Table:  Modal Participating Mass Ratios, Part 3 of 3 

OutputCase StepType StepNum SumRX SumRY SumRZ 
      

MODAL   3.064E-05 8.288E-16 0.00862 
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Table:  Modal Participation Factors, Part 1 of 2 

Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNum Period UX UY UZ RX 
   Sec Kip-ft Kip-ft Kip-ft Kip-ft 

MODAL   0. 0. 0.394208 -0.000012 -0.172041 

 
 
Table:  Modal Participation Factors, Part 2 of 2 

Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-ft Kip-ft Kip-ft-s2 Kip-ft 

MODAL   0.000057 -1098.69344 0. 0. 

 
 
Table:  Modal Periods And Frequencies 

Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 
   Sec Cyc/sec rad/sec rad2/sec2 

MODAL   0. 0.0000E+00 0.0000E+00 0.0000E+00 

 
 
Table:  Program Control, Part 1 of 2 

Table:  Program Control, Part 1 of 2 

ProgramNa
me 

Version ProgLevel LicenseNum LicenseOS LicenseSC License
HT 

CurrUnits 

        

SAP2000 18.1.1 Advanced 2010*1GR
WHLW4599

V5FQ 

No No No Kip, ft, F 

 
 
Table:  Program Control, Part 2 of 2 

Table:  Program Control, Part 2 of 2 

SteelCode ConcCode AlumCode ColdCode RegenHinge 
     

AISC360-05/IBC2006 ACI 318-08/IBC2009 AA-ASD 2000 AISI-ASD96 Yes 
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APPENDIX C 

C.  ANALYSIS OUTPUT FOR PAGE AVENUE BRIDGE 

  



www.manaraa.com

252 
 

 
License #2010*1GRWHLW4599V5FQ 

 

 
Static and Dynamic Characterization of Tied Arch Bridges 

 
 
 
 

Prepared for 
Missouri University of Science and Technology 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Prepared by 
John Finke 

 
 

Model Name: 20160610 Page Avenue Rev 012 HS20 C2F LBK.sdb 
 
 

26 June 2016 



www.manaraa.com

253 
 

Section 1  Page Avenue Bridge Analysis Input 

Table:  Material Properties 01 - General, Part 1 of 2 

Table:  Material Properties 01 - General, Part 1 of 2 

Material Type SymType TempDepen
d 

Color GUID 

      

4000Psi Concrete Isotropic No Red  
A416Gr270 Tendon Uniaxial No Magenta  
A572Gr50 Steel Isotropic No Blue  
A615Gr60 Rebar Uniaxial No Gray8Dark  
A992Fy50 Steel Isotropic No Cyan  

ASTM A586 Steel Isotropic No Blue  
STAAD1 Steel Isotropic No Yellow D7D209AA-88D2-

4D08-A6D1-
DC069FD57107 

STAAD2 Other Isotropic No Blue 02574C1E-4D75-4112-
B3BD-9AF3D1778D8A 

 
 
Table:  Material Properties 01 - General, Part 2 of 2 

Table:  Material Properties 01 - General, Part 2 of 2 

Material Notes 
  

4000Psi Normalweight f'c = 4 ksi added 
12/30/2013 8:14:18 PM 

A416Gr270 ASTM A416 Grade 270 3/5/2016 
7:31:46 PM 

A572Gr50 ASTM A572 Grade 50 added 
1/5/2014 1:54:23 PM 

A615Gr60 ASTM A615 Grade 60 added 
1/5/2014 1:54:38 PM 

A992Fy50 ASTM A992 Fy=50 ksi added 
12/30/2013 8:14:18 PM 

ASTM A586 ASTM A36 added 1/5/2014 9:29:36 
PM 

STAAD1 ASTM A36 added 12/30/2013 
8:14:18 PM 

STAAD2 ASTM A36 added 12/30/2013 
8:14:18 PM 

 
 
Table:  Material Properties 02 - Basic Mechanical Properties 

Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

4000Psi 2.5920E+02 9.6674E+01 18688320. 7786800. 0.2 5.5000E-06 
A416Gr270 8.4672E+02 3.1580E+02 590976000.   6.5000E-06 
A572Gr50 8.4672E+02 3.1580E+02 601344000. 231286153.8 0.3 6.5000E-06 
A615Gr60 8.4672E+02 3.1580E+02 601344000.   6.5000E-06 
A992Fy50 8.4672E+02 3.1580E+02 601344000. 231286153.8 0.3 6.5000E-06 

ASTM A586 8.4672E+02 3.1580E+02 476928000. 183433846.2 0.3 6.5000E-06 
STAAD1 8.4503E+02 3.1517E+02 601344000. 231286153.8 0.3 0.0000E+00 
STAAD2 8.4503E+02 3.1517E+02 476928000. 183433846.2 0.3 0.0000E+00 
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Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Material Fy Fu EffFy EffFu SSCurveOpt SSHysType SHard 
 Kip/ft2 Kip/ft2 Kip/ft2 Kip/ft2    

A572Gr50 1036800. 1347840. 1140480. 1482624. Simple Kinematic 0.015 
A992Fy50 1036800. 1347840. 1140480. 1482624. Simple Kinematic 0.015 

ASTM A586 3110400. 4561920. 3110400. 4561920. Simple Kinematic 0.02 
STAAD1 746496. 1202688. 1119744. 1322956.8 Simple Kinematic 0.02 

 
 
Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Material SMax SRup FinalSlope 
    

A572Gr50 0.11 0.17 -0.1 
A992Fy50 0.11 0.17 -0.1 

ASTM A586 0.14 0.2 -0.1 
STAAD1 0.14 0.2 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Material Fc LtWtConc SSCurveOpt SSHysType SFc SCap FinalSlope 
 Kip/ft2       

4000Psi 82944. No Mander Takeda 0.002219 0.005 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Table:  Material Properties 03b - Concrete 
Data, Part 2 of 2 

Material FAngle DAngle 
 Degrees Degrees 

4000Psi 0. 0. 

 
 
Table:  Frame Section Properties 01 - General, Part 1 of 8 

Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

Cable ASTM A586 General 0.08333 0.08333  
FLBMS A572Gr50 I/Wide Flange 0.91722 0.14757 0.01639 

LLATERALS A572Gr50 I/Wide Flange 0.10264 0.10764 0.00757 
P4Beam 4000Psi Rectangular 0.80381 1.17563  
P4Col 4000Psi Rectangular 0.81667 0.81667  

Pier5Beam 4000Psi Rectangular 0.80381 1.17563  
Pier5Col 4000Psi Rectangular 0.81667 0.81667  

R1-2 R14-15 A572Gr50 SD Section    
R1LATERAL A572Gr50 SD Section    
R3-4 R12-13 A572Gr50 SD Section    
R5-7 R9-11 A572Gr50 SD Section    

R8 A572Gr50 SD Section    
STDSEC1 STAAD1 General 0.14415 0.14415  
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Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

STDSEC10 STAAD1 General 0.13823 0.13823  
STDSEC11 STAAD1 General 0.14348 0.14348  
STDSEC12 STAAD1 General 0.14793 0.14793  
STDSEC13 STAAD1 General 0.14793 0.14793  
STDSEC14 STAAD1 General 0.14793 0.14793  
STDSEC15 STAAD1 General 0.07336 0.07336  
STDSEC16 STAAD1 General 0.07336 0.07336  
STDSEC17 STAAD1 General 0.06682 0.06682  
STDSEC18 STAAD1 General 0.06682 0.06682  
STDSEC19 STAAD2 General 0.02282 0.02282  
STDSEC2 STAAD1 General 0.14415 0.14415  
STDSEC3 STAAD1 General 0.13282 0.13282  
STDSEC4 STAAD1 General 0.14415 0.14415  
STDSEC5 STAAD1 General 0.14415 0.14415  
STDSEC6 STAAD1 General 0.14793 0.14793  
STDSEC7 STAAD1 General 0.14793 0.14793  
STDSEC8 STAAD1 General 0.14793 0.14793  
STDSEC9 STAAD1 General 0.14348 0.14348  

TGDRT1-T3 T13-
T15 

A572Gr50 SD Section    

TGDRT4-6 T10-12 A572Gr50 SD Section    
TGDRT7-9 A572Gr50 SD Section    

ULATERALS A572Gr50 SD Section    
W30X108 A992Fy50 I/Wide Flange 0.20715 0.07274 0.00528 

 
 
Table:  Frame Section Properties 01 - General, Part 2 of 8 

Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

Cable    5.229E-04 4.349E-08 2.174E-08 
FLBMS 0.00521 0.14757 0.01639 0.0094 4.443E-07 0.001282 

LLATERALS 0.00472 0.10764 0.00757 0.002 3.271E-08 3.953E-06 
P4Beam    0.945 0.117451 0.05088 
P4Col    0.6669 0.062645 0.037068 

Pier5Beam    0.945 0.117451 0.05088 
Pier5Col    0.6669 0.062645 0.037068 

R1-2 R14-15    0.0219 0.000711 0.000759 
R1LATERAL    0.0029 0.000012 0.000015 
R3-4 R12-13    0.0219 0.000711 0.000759 
R5-7 R9-11    0.0206 0.000657 0.000734 

R8    0.0191 0.000616 0.000645 
STDSEC1    0.0208 0. 0.002357 

STDSEC10    0.0191 0. 0.000644 
STDSEC11    0.0206 0. 0.000735 
STDSEC12    0.0219 0. 0.00076 
STDSEC13    0.0219 0. 0.00076 
STDSEC14    0.0219 0. 0.00076 
STDSEC15    0.0054 0. 0.000027 
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Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

STDSEC16    0.0054 0. 0.000027 
STDSEC17    0.0045 0. 0.00004 
STDSEC18    0.0045 0. 0.00004 
STDSEC19    5.208E-04 0. 1.891E-06 
STDSEC2    0.0208 0. 0.002357 
STDSEC3    0.0176 0. 0.001774 
STDSEC4    0.0208 0. 0.002357 
STDSEC5    0.0208 0. 0.002357 
STDSEC6    0.0219 0. 0.00076 
STDSEC7    0.0219 0. 0.00076 
STDSEC8    0.0219 0. 0.00076 
STDSEC9    0.0206 0. 0.000735 

TGDRT1-T3 T13-
T15 

   0.0208 9.917E-07 0.002421 

TGDRT4-6 T10-12    0.0208 9.917E-07 0.002421 
TGDRT7-9    0.0176 4.193E-07 0.001771 

ULATERALS    0.0029 0.000012 0.000015 
W30X108 0.00378 0.07274 0.00528 0.0015 1.161E-08 0.00001 

 
 
Table:  Frame Section Properties 01 - General, Part 3 of 8 

Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

Cable 2.174E-08 0. 4.822E-05 4.822E-05 3.349E-07 3.349E-07 
FLBMS 8.788E-06 0. 0.0048 0.004 0.002795 0.000119 

LLATERALS 1.574E-06 0. 4.847E-04 0.0014 0.000077 0.000029 
P4Beam 0.10884 0. 0.7875 0.7875 0.126598 0.185159 
P4Col 0.037068 0. 0.5558 0.5558 0.090779 0.090779 

Pier5Beam 0.10884 0. 0.7875 0.7875 0.126598 0.185159 
Pier5Col 0.037068 0. 0.5558 0.5558 0.090779 0.090779 

R1-2 R14-15 0.000317 0. 0.0131 0.0096 0.003051 0.00213 
R1LATERAL 6.007E-06 0. 0.0021 6.828E-04 0.000142 0.00011 
R3-4 R12-13 0.000317 0. 0.0131 0.0096 0.003051 0.00213 
R5-7 R9-11 0.000288 0. 0.0119 0.0095 0.002951 0.001954 

R8 0.000279 0. 0.0117 0.008 0.002619 0.001893 
STDSEC1 0. 0. 0. 0. 0. 0. 

STDSEC10 0. 0. 0. 0. 0. 0. 
STDSEC11 0. 0. 0. 0. 0. 0. 
STDSEC12 0. 0. 0. 0. 0. 0. 
STDSEC13 0. 0. 0. 0. 0. 0. 
STDSEC14 0. 0. 0. 0. 0. 0. 
STDSEC15 0. 0. 0. 0. 0. 0. 
STDSEC16 0. 0. 0. 0. 0. 0. 
STDSEC17 0. 0. 0. 0. 0. 0. 
STDSEC18 0. 0. 0. 0. 0. 0. 
STDSEC19 0. 0. 0. 0. 0. 0. 
STDSEC2 0. 0. 0. 0. 0. 0. 
STDSEC3 0. 0. 0. 0. 0. 0. 
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Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

STDSEC4 0. 0. 0. 0. 0. 0. 
STDSEC5 0. 0. 0. 0. 0. 0. 
STDSEC6 0. 0. 0. 0. 0. 0. 
STDSEC7 0. 0. 0. 0. 0. 0. 
STDSEC8 0. 0. 0. 0. 0. 0. 
STDSEC9 0. 0. 0. 0. 0. 0. 

TGDRT1-T3 T13-
T15 

0.00031 0. 0.0119 0.0097 0.005483 0.002062 

TGDRT4-6 T10-12 0.00031 0. 0.0119 0.0097 0.005483 0.002062 
TGDRT7-9 0.000288 0. 0.0113 0.0065 0.004139 0.001918 

ULATERALS 6.007E-06 0. 0.0021 6.828E-04 0.000142 0.00011 
W30X108 3.395E-07 0. 7.840E-04 6.399E-04 0.0001 9.336E-06 

 
 
Table:  Frame Section Properties 01 - General, Part 4 of 8 

Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

Cable 3.349E-07 3.349E-07 0.00694 0.00694 0. No 
FLBMS 0.003197 0.000184 0.36841 0.03051  No 

LLATERALS 0.000086 0.000044 0.04399 0.02776  No 
P4Beam 0.189896 0.277739 0.23204 0.33938  Yes 
P4Col 0.136168 0.136168 0.23575 0.23575  Yes 

Pier5Beam 0.189896 0.277739 0.23204 0.33938  Yes 
Pier5Col 0.136168 0.136168 0.23575 0.23575  Yes 

R1-2 R14-15 0.003682 0.002451 0.18623 0.12043  No 
R1LATERAL 0.000182 0.000127 0.07102 0.04551  No 
R3-4 R12-13 0.003682 0.002451 0.18623 0.12043  No 
R5-7 R9-11 0.003525 0.002255 0.18894 0.11842  No 

R8 0.003163 0.002156 0.1837 0.12096  No 
STDSEC1 0. 0. 0.33676 0. 0. No 

STDSEC10 0. 0. 0.18365 0. 0. No 
STDSEC11 0. 0. 0.18895 0. 0. No 
STDSEC12 0. 0. 0.1863 0. 0. No 
STDSEC13 0. 0. 0.1863 0. 0. No 
STDSEC14 0. 0. 0.1863 0. 0. No 
STDSEC15 0. 0. 0.07103 0. 0. No 
STDSEC16 0. 0. 0.07103 0. 0. No 
STDSEC17 0. 0. 0.0947 0. 0. No 
STDSEC18 0. 0. 0.0947 0. 0. No 
STDSEC19 0. 0. 0.06025 0. 0. No 
STDSEC2 0. 0. 0.33676 0. 0. No 
STDSEC3 0. 0. 0.31716 0. 0. No 
STDSEC4 0. 0. 0.33676 0. 0. No 
STDSEC5 0. 0. 0.33676 0. 0. No 
STDSEC6 0. 0. 0.1863 0. 0. No 
STDSEC7 0. 0. 0.1863 0. 0. No 
STDSEC8 0. 0. 0.1863 0. 0. No 
STDSEC9 0. 0. 0.18895 0. 0. No 
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Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

TGDRT1-T3 T13-
T15 

0.006438 0.002345 0.34141 0.12217  No 

TGDRT4-6 T10-12 0.006438 0.002345 0.34141 0.12217  No 
TGDRT7-9 0.005005 0.002119 0.31701 0.12793  No 

ULATERALS 0.000182 0.000127 0.07102 0.04551  No 
W30X108 0.000116 0.000015 0.08246 0.0149  No 

 
 
Table:  Frame Section Properties 01 - General, Part 5 of 8 

Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

Cable No Cyan 96.385 35.95 No 1. 
FLBMS No White 1029.448 383.95 No 1. 

LLATERALS No White 285.956 106.65 No 1. 
P4Beam No Gray8Dark 1854.997 691.86 No 1. 
P4Col No Green 1757.783 655.6 No 1. 

Pier5Beam No Magenta 1854.997 691.86 No 1. 
Pier5Col No Gray8Dark 1754.872 654.52 No 1. 

R1-2 R14-15 No White 775.511 289.24 No 1. 
R1LATERAL No White 37.195 13.87 No 1. 
R3-4 R12-13 No White 519.074 193.6 No 1. 
R5-7 R9-11 No White 574.544 214.29 No 1. 

R8 No White 154.893 57.77 No 1. 
STDSEC1 No Cyan 27.606 10.3 No 1. 

STDSEC10 No Magenta 0. 0. No 1. 
STDSEC11 No Yellow 0. 0. No 1. 
STDSEC12 No Gray8Dark 0. 0. No 1. 
STDSEC13 No Blue 0. 0. No 1. 
STDSEC14 No Green 0. 0. No 1. 
STDSEC15 No Cyan 0. 0. No 1. 
STDSEC16 No Red 0. 0. No 1. 
STDSEC17 No Magenta 0. 0. No 1. 
STDSEC18 No Yellow 0. 0. No 1. 
STDSEC19 No Gray8Dark 0. 0. No 1. 
STDSEC2 No Red 0. 0. No 1. 
STDSEC3 No Magenta 0. 0. No 1. 
STDSEC4 No Yellow 0. 0. No 1. 
STDSEC5 No Gray8Dark 20.404 7.61 No 1. 
STDSEC6 No Blue 7.905 2.95 No 1. 
STDSEC7 No Green 0. 0. No 1. 
STDSEC8 No Cyan 0. 0. No 1. 
STDSEC9 No Red 0. 0. No 1. 

TGDRT1-T3 T13-
T15 

No White 657.549 245.25 No 1. 

TGDRT4-6 T10-12 No White 818.63 305.33 No 1. 
TGDRT7-9 No White 240.673 89.76 No 1. 

ULATERALS No White 594.731 221.82 No 1. 
W30X108 No Green 590.479 220.23 Yes 1. 
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Table:  Frame Section Properties 01 - General, Part 6 of 8 

Table:  Frame Section Properties 01 - General, Part 6 of 8 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

Cable 1. 1. 1. 1. 1. 1. 
FLBMS 1. 1. 1. 1. 1. 1. 

LLATERALS 1. 1. 1. 1. 1. 1. 
P4Beam 1. 1. 1. 1. 1. 1. 
P4Col 1. 1. 1. 1. 1. 1. 

Pier5Beam 1. 1. 1. 1. 1. 1. 
Pier5Col 1. 1. 1. 1. 1. 1. 

R1-2 R14-15 1. 1. 1. 1. 1. 1. 
R1LATERAL 1. 1. 1. 1. 1. 1. 
R3-4 R12-13 1. 1. 1. 1. 1. 1. 
R5-7 R9-11 1. 1. 1. 1. 1. 1. 

R8 1. 1. 1. 1. 1. 1. 
STDSEC1 1. 1. 1. 1. 1. 1. 

STDSEC10 1. 1. 1. 1. 1. 1. 
STDSEC11 1. 1. 1. 1. 1. 1. 
STDSEC12 1. 1. 1. 1. 1. 1. 
STDSEC13 1. 1. 1. 1. 1. 1. 
STDSEC14 1. 1. 1. 1. 1. 1. 
STDSEC15 1. 1. 1. 1. 1. 1. 
STDSEC16 1. 1. 1. 1. 1. 1. 
STDSEC17 1. 1. 1. 1. 1. 1. 
STDSEC18 1. 1. 1. 1. 1. 1. 
STDSEC19 1. 1. 1. 1. 1. 1. 
STDSEC2 1. 1. 1. 1. 1. 1. 
STDSEC3 1. 1. 1. 1. 1. 1. 
STDSEC4 1. 1. 1. 1. 1. 1. 
STDSEC5 1. 1. 1. 1. 1. 1. 
STDSEC6 1. 1. 1. 1. 1. 1. 
STDSEC7 1. 1. 1. 1. 1. 1. 
STDSEC8 1. 1. 1. 1. 1. 1. 
STDSEC9 1. 1. 1. 1. 1. 1. 

TGDRT1-T3 T13-
T15 

1. 1. 1. 1. 1. 1. 

TGDRT4-6 T10-12 1. 1. 1. 1. 1. 1. 
TGDRT7-9 1. 1. 1. 1. 1. 1. 

ULATERALS 1. 1. 1. 1. 1. 1. 
W30X108 1. 1. 1. 1. 1. 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 7 of 8 

Table:  Frame Section Properties 01 - General, Part 7 of 8 

SectionName WMod SectInFile FileName GUID 
     

Cable 1.    
FLBMS 1.    

LLATERALS 1.    
P4Beam 1.    
P4Col 1.    
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Table:  Frame Section Properties 01 - General, Part 7 of 8 

SectionName WMod SectInFile FileName GUID 
     

Pier5Beam 1.    
Pier5Col 1.    

R1-2 R14-15 1.    
R1LATERAL 1.    
R3-4 R12-13 1.    
R5-7 R9-11 1.    

R8 1.    
STDSEC1 1.    

STDSEC10 1.    
STDSEC11 1.    
STDSEC12 1.    
STDSEC13 1.    
STDSEC14 1.    
STDSEC15 1.    
STDSEC16 1.    
STDSEC17 1.    
STDSEC18 1.    
STDSEC19 1.    
STDSEC2 1.    
STDSEC3 1.    
STDSEC4 1.    
STDSEC5 1.    
STDSEC6 1.    
STDSEC7 1.    
STDSEC8 1.    
STDSEC9 1.    

TGDRT1-T3 T13-
T15 

1.    

TGDRT4-6 T10-12 1.    
TGDRT7-9 1.    

ULATERALS 1.    
W30X108 1. W30X108 c:\program files\computers and 

structures\sap2000 18\sections.pro 
 

 
 
Table:  Frame Section Properties 01 - General, Part 8 of 8 

Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

Cable Added 5/30/2016 10:27:21 AM 
FLBMS Added 1/6/2014 5:03:09 PM 

LLATERALS Added 1/6/2014 4:44:00 PM 
P4Beam Added 3/5/2016 8:05:10 PM 
P4Col Added 3/5/2016 8:10:25 PM 

Pier5Beam Added 3/5/2016 8:23:10 PM 
Pier5Col Added 3/5/2016 8:23:33 PM 

R1-2 R14-15 Added 1/5/2014 9:01:13 PM 
R1LATERAL Added 1/13/2014 11:02:26 PM 
R3-4 R12-13 Added 1/5/2014 9:09:56 PM 
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Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

R5-7 R9-11 Added 1/5/2014 9:13:37 PM 
R8 Added 1/5/2014 9:18:02 PM 

STDSEC1 Added 12/30/2013 8:15:26 PM 
STDSEC10 Added 12/30/2013 8:15:26 PM 
STDSEC11 Added 12/30/2013 8:15:26 PM 
STDSEC12 Added 12/30/2013 8:15:26 PM 
STDSEC13 Added 12/30/2013 8:15:26 PM 
STDSEC14 Added 12/30/2013 8:15:26 PM 
STDSEC15 Added 12/30/2013 8:15:26 PM 
STDSEC16 Added 12/30/2013 8:15:26 PM 
STDSEC17 Added 12/30/2013 8:15:26 PM 
STDSEC18 Added 12/30/2013 8:15:26 PM 
STDSEC19 Added 12/30/2013 8:15:26 PM 
STDSEC2 Added 12/30/2013 8:15:26 PM 
STDSEC3 Added 12/30/2013 8:15:26 PM 
STDSEC4 Added 12/30/2013 8:15:26 PM 
STDSEC5 Added 12/30/2013 8:15:26 PM 
STDSEC6 Added 12/30/2013 8:15:26 PM 
STDSEC7 Added 12/30/2013 8:15:26 PM 
STDSEC8 Added 12/30/2013 8:15:26 PM 
STDSEC9 Added 12/30/2013 8:15:26 PM 

TGDRT1-T3 T13-
T15 

Added 1/5/2014 1:51:50 PM 

TGDRT4-6 T10-12 Added 1/5/2014 8:34:10 PM 
TGDRT7-9 Added 1/5/2014 8:43:17 PM 

ULATERALS Added 1/12/2014 9:20:26 PM 
W30X108 Imported 3/10/2016 2:49:32 PM 

from SECTIONS.PRO 

 
 
Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

SectionNam
e 

RebarMatL RebarMatC ReinfConfig LatRein
f 

Cover NumBars3D
ir 

NumBars
2Dir 

     ft   

P4Beam A615Gr60 A615Gr60 Rectangular Ties 0.01042 3 3 
P4Col A615Gr60 A615Gr60 Rectangular Ties 0.01042 3 3 

Pier5Beam A615Gr60 A615Gr60 Rectangular Ties 0.01042 3 3 
Pier5Col A615Gr60 A615Gr60 Rectangular Ties 0.01042 3 3 

 
 
Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

SectionNam
e 

BarSizeL BarSizeC SpacingC NumCBars2 NumCBars3 ReinfType 

   ft    

P4Beam #9 #4 0.04167 3 3 Design 
P4Col #9 #4 0.04167 3 3 Design 

Pier5Beam #9 #4 0.04167 3 3 Design 
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Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

SectionNam
e 

BarSizeL BarSizeC SpacingC NumCBars2 NumCBars3 ReinfType 

   ft    

Pier5Col #9 #4 0.04167 3 3 Design 

 
 
Table:  Link Property Definitions 01 - General, Part 1 of 3 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Link LinkType Mass Weight RotInert1 RotInert2 RotInert3 
  Kip-s2/ft Kip Kip-ft-s2 Kip-ft-s2 Kip-ft-s2 

Pier4F Linear 0. 0. 0. 0. 0. 
Pier5E Linear 0. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 2 of 3 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Link DefLength DefArea PDM2I PDM2J PDM3I PDM3J 
 ft ft2     

Pier4F 0.08333 0.0069 0. 0. 0. 0. 
Pier5E 0.08333 0.0069 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 3 of 3 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Link Color GUID Notes 
    

Pier4F Cyan 30d405fd-730f-41e3-
bbea-244cda3e9650 

Added 3/5/2016 8:18:58 PM 

Pier5E Cyan a2bde322-04e3-446c-
ba4c-3fb7596045e1 

Added 3/5/2016 8:18:58 PM 

 
 
Table:  Link Property Definitions 02 - Linear 

Table:  Link Property Definitions 02 - Linear 

Link DOF Fixed TransKE RotKE TransCE RotCE DJ 
   Kip/ft Kip-ft/rad Kip-s/ft Kip-ft-s/rad ft 

Pier4F U1 No 1200000.  0.   
Pier4F U2 No 1200000.  0.  0. 
Pier4F U3 No 1200000.  0.  0. 
Pier4F R1 No  0.  0.  
Pier4F R2 No  0.  0.  
Pier4F R3 No  0.  0.  
Pier5E U1 No 1200000.  0.   
Pier5E U2 No 1200.  0.  0. 
Pier5E U3 No 1200000.  0.  0. 
Pier5E R1 No  0.  0.  
Pier5E R2 No  0.  0.  
Pier5E R3 No  0.  0.  
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Table:  Area Section Properties, Part 1 of 4 

Table:  Area Section Properties, Part 1 of 4 

Section Material MatAngle AreaType Type DrillDOF Thickness BendThic
k 

  Degrees    ft ft 

CONCDEC
K 

4000Psi 0. Shell Shell-Thin Yes 0.06015 0.06015 

P4Shaft 4000Psi 0. Shell Shell-Thick Yes 0.94583 0.94583 
Pier5Shaft 4000Psi 0. Shell Shell-Thick Yes 1.01 1.01 

 
 
Table:  Area Section Properties, Part 2 of 4 

Table:  Area Section Properties, Part 2 of 4 

Section Arc InComp CoordSys Color TotalWt TotalMass 
 Degrees    Kip Kip-s2/ft 

CONCDEC
K 

   Red 6047.367 1961.3 

P4Shaft    Green 2726.724 1016.99 
Pier5Shaft    Green 7775.441 2900.02 

 
 
Table:  Area Section Properties, Part 3 of 4 

Table:  Area Section Properties, Part 3 of 4 

Section F11Mod F22Mod F12Mod M11Mod M22Mod M12Mod V13Mod 
        

CONCDEC
K 

1. 1. 1. 1. 1. 1. 1. 

P4Shaft 1. 1. 1. 1. 1. 1. 1. 
Pier5Shaft 1. 1. 1. 1. 1. 1. 1. 

 
 
Table:  Area Section Properties, Part 4 of 4 

Table:  Area Section Properties, Part 4 of 4 

Section V23Mod MMod WMod GUID Notes 
      

CONCDEC
K 

1. 1. 1.15 758d35c5-1090-4412-
961e-a55c3a7a8dcf 

Added 3/13/2016 4:57:39 PM 

P4Shaft 1. 1. 1. e23ce15c-c909-437f-
a64a-f4b7fa56ca94 

Added 3/5/2016 8:14:07 PM 

Pier5Shaft 1. 1. 1. 53f15048-2c5b-4fcb-
a24a-21a06b537a20 

Added 3/5/2016 8:30:26 PM 

 
 
Table:  Section Designer Properties 01 - General, Part 1 of 5 

Table:  Section Designer Properties 01 - General, Part 1 of 5 

SectionName DesignType DsgnOrChck BaseMat IncludeVStr nTotalShp 
      

R1-2 R14-15 No Check/Design Check A572Gr50 No 4 
R1LATERAL No Check/Design Check A572Gr50 No 4 
R3-4 R12-13 No Check/Design Check A572Gr50 No 4 
R5-7 R9-11 No Check/Design Check A572Gr50 No 4 

R8 No Check/Design Check A572Gr50 No 4 
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Table:  Section Designer Properties 01 - General, Part 1 of 5 

SectionName DesignType DsgnOrChck BaseMat IncludeVStr nTotalShp 
      

TGDRT1-T3 T13-
T15 

No Check/Design Check A572Gr50 No 4 

TGDRT4-6 T10-12 No Check/Design Check A572Gr50 No 4 
TGDRT7-9 No Check/Design Check A572Gr50 No 4 

ULATERALS No Check/Design Check A572Gr50 No 4 

 
 
Table:  Section Designer Properties 01 - General, Part 2 of 5 

Table:  Section Designer Properties 01 - General, Part 2 of 5 

SectionName nIWideFlng nChannel nTee nAngle nDblAngle nBoxTube 
       

R1-2 R14-15 0 0 0 0 0 0 
R1LATERAL 0 0 0 0 0 0 
R3-4 R12-13 0 0 0 0 0 0 
R5-7 R9-11 0 0 0 0 0 0 

R8 0 0 0 0 0 0 
TGDRT1-T3 T13-

T15 
0 0 0 0 0 0 

TGDRT4-6 T10-12 0 0 0 0 0 0 
TGDRT7-9 0 0 0 0 0 0 

ULATERALS 0 0 0 0 0 0 

 
 
Table:  Section Designer Properties 01 - General, Part 3 of 5 

Table:  Section Designer Properties 01 - General, Part 3 of 5 

SectionName nPipe nPlate nSolidRect nSolidCirc nSolidSeg nSolidSect 
       

R1-2 R14-15 0 0 4 0 0 0 
R1LATERAL 0 0 4 0 0 0 
R3-4 R12-13 0 0 4 0 0 0 
R5-7 R9-11 0 0 4 0 0 0 

R8 0 0 4 0 0 0 
TGDRT1-T3 T13-

T15 
0 0 4 0 0 0 

TGDRT4-6 T10-12 0 0 4 0 0 0 
TGDRT7-9 0 0 4 0 0 0 

ULATERALS 0 0 4 0 0 0 

 
 
Table:  Section Designer Properties 01 - General, Part 4 of 5 

Table:  Section Designer Properties 01 - General, Part 4 of 5 

SectionName nPolygon nReinfSing nReinfLine nReinfRect nReinfCirc nRefLine 
       

R1-2 R14-15 0 0 0 0 0 0 
R1LATERAL 0 0 0 0 0 0 
R3-4 R12-13 0 0 0 0 0 0 
R5-7 R9-11 0 0 0 0 0 0 

R8 0 0 0 0 0 0 
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Table:  Section Designer Properties 01 - General, Part 4 of 5 

SectionName nPolygon nReinfSing nReinfLine nReinfRect nReinfCirc nRefLine 
       

TGDRT1-T3 T13-
T15 

0 0 0 0 0 0 

TGDRT4-6 T10-12 0 0 0 0 0 0 
TGDRT7-9 0 0 0 0 0 0 

ULATERALS 0 0 0 0 0 0 

 
 
Table:  Section Designer Properties 01 - General, Part 5 of 5 

Table:  Section Designer Properties 01 - General, Part 5 of 5 

SectionName nRefCirc nCaltransSq nCaltransCr nCaltransHx nCaltransOc 
      

R1-2 R14-15 0 0 0 0 0 
R1LATERAL 0 0 0 0 0 
R3-4 R12-13 0 0 0 0 0 
R5-7 R9-11 0 0 0 0 0 

R8 0 0 0 0 0 
TGDRT1-T3 T13-

T15 
0 0 0 0 0 

TGDRT4-6 T10-12 0 0 0 0 0 
TGDRT7-9 0 0 0 0 0 

ULATERALS 0 0 0 0 0 

 
 
Section 2  Page Avenue Bridge Load Cases 

Table:  Load Case Definitions, Part 1 of 3 

Table:  Load Case Definitions, Part 1 of 3 

Case Type InitialCond ModalCase BaseCase MassSource DesTypeOpt 
       

DEAD NonStatic Zero    Prog Det 
MODAL LinModal DEAD    Prog Det 

LIVELOAD LinMoving DEAD    Prog Det 

 
 
Table:  Load Case Definitions, Part 2 of 3 

Table:  Load Case Definitions, Part 2 of 3 

Case DesignType DesActOpt DesignAct AutoType RunCase CaseStatus 
       

DEAD DEAD Prog Det Non-
Composite 

None Yes Finished 

MODAL OTHER Prog Det Other None Yes Finished 
LIVELOAD VEHICLE 

LIVE 
Prog Det Short-Term 

Composite 
None Yes Finished 

 
 
Table:  Load Case Definitions, Part 3 of 3 

Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

DEAD   
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Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

MODAL   
LIVELOAD   

 
Table:  Case - Static 1 - Load Assignments 

Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 
    

DEAD Load pattern DEAD 1. 

 
 
Table:  Case - Static 2 - Nonlinear Load Application 

Table:  Case - Static 2 - Nonlinear Load Application 

Case LoadApp MonitorDOF MonitorJt 
    

DEAD Full Load U1 59 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Case Unloading GeoNonLin ResultsSave MaxTotal MaxNull 
      

DEAD Unload Entire None Final State 200 50 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Case MaxIterCS MaxIterNR ItConvTol UseEvStep EvLumpTol LSPerIter 
       

DEAD 10 40 1.0000E-04 Yes 0.01 20 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Case LSTol LSStepFact StageSave StageMinIns StageMinTD 
      

DEAD 0.1 1.618    

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Case FrameTC FrameHinge CableTC LinkTC LinkOther TimeDepMa
t 

       

DEAD Yes Yes Yes Yes Yes  
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Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TFMaxIter TFTol TFAccelFact TFNoStop 
     

DEAD 10 0.01 1. No 

 
 
Table:  Case - Moving Load 1 - Lane Assignments 

Table:  Case - Moving Load 1 - Lane Assignments 

Case AssignNum VehClass ScaleFactor MinLoaded MaxLoaded NumLanes 
       

LIVELOAD 1 HS20LOADING 1. 1 7 7 

 
 
Table:  Case - Moving Load 2 - Lanes Loaded 

Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 
   

LIVELOAD 1 CTRLANE2 
LIVELOAD 1 LTLANE21 
LIVELOAD 1 LTLANE22 
LIVELOAD 1 LTLANE23 
LIVELOAD 1 RTLANE21 
LIVELOAD 1 RTLANE22 
LIVELOAD 1 RTLANE23 

 
 
Table:  Case - Moving Load 3 - MultiLane Factors 

Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 1 1. 
LIVELOAD 2 1. 
LIVELOAD 3 0.9 
LIVELOAD 4 0.75 
LIVELOAD 5 0.75 
LIVELOAD 6 0.75 
LIVELOAD 7 0.75 
LIVELOAD 8 0.75 
LIVELOAD 9 0.75 
LIVELOAD 10 0.75 
LIVELOAD 11 0.75 
LIVELOAD 12 0.75 
LIVELOAD 13 0.75 
LIVELOAD 14 0.75 
LIVELOAD 15 0.75 
LIVELOAD 16 0.75 
LIVELOAD 17 0.75 
LIVELOAD 18 0.75 
LIVELOAD 19 0.75 
LIVELOAD 20 0.75 
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Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 21 0.75 
LIVELOAD 22 0.75 
LIVELOAD 23 0.75 
LIVELOAD 24 0.75 
LIVELOAD 25 0.75 
LIVELOAD 26 0.75 
LIVELOAD 27 0.75 
LIVELOAD 28 0.75 
LIVELOAD 29 0.75 
LIVELOAD 30 0.75 
LIVELOAD 31 0.75 
LIVELOAD 32 0.75 
LIVELOAD 33 0.75 
LIVELOAD 34 0.75 

 
 
Table:  Case - Modal 1 - General, Part 1 of 2 

Table:  Case - Modal 1 - General, Part 1 of 2 

Case ModeType MaxNumMo
des 

MinNumMo
des 

EigenShift EigenCutoff EigenTol 

    Cyc/sec Cyc/sec  

MODAL Eigen 30 1 0.0000E+00 0.0000E+00 1.0000E-09 

 
 
Table:  Case - Modal 1 - General, Part 2 of 2 

Table:  Case - Modal 1 - General, 
Part 2 of 2 

Case AutoShift 
  

MODAL Yes 

 
 
Section 3  Page Avenue Bridge Modal Analysis Output 

Table:  Modal Load Participation Ratios 

Table:  Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 
   Percent Percent 

MODAL Acceleration UX 99.8425 92.3113 
MODAL Acceleration UY 99.9012 73.4875 
MODAL Acceleration UZ 98.2203 44.9992 

 
 
Table:  Modal Participating Mass Ratios, Part 1 of 3 

Table:  Modal Participating Mass Ratios, Part 1 of 3 

OutputCase StepType StepNum Period UX UY UZ SumUX 
   Sec     

MODAL   0. 0. 7.161E-06 6.611E-13 0. 
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Table:  Modal Participating Mass Ratios, Part 2 of 3 

Table:  Modal Participating Mass Ratios, Part 2 of 3 

OutputCase StepType StepNum SumUY SumUZ RX RY RZ 
        

MODAL   7.161E-06 6.611E-13 3.712E-05 2.092E-11 0.00024 

 
Table:  Modal Participating Mass Ratios, Part 3 of 3 

Table:  Modal Participating Mass Ratios, Part 3 of 3 

OutputCase StepType StepNum SumRX SumRY SumRZ 
      

MODAL   3.712E-05 2.092E-11 0.00024 

 
 
Table:  Modal Participation Factors, Part 1 of 2 

Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNum Period UX UY UZ RX 
   Sec Kip-ft Kip-ft Kip-ft Kip-ft 

MODAL   0. 0. -0.00017 6.981E-09 0.000335 

 
 
Table:  Modal Participation Factors, Part 2 of 2 

Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-ft Kip-ft Kip-ft-s2 Kip-ft 

MODAL   0.000143 2.634423 0. 0. 

 
 
Table:  Modal Periods And Frequencies 

Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 
   Sec Cyc/sec rad/sec rad2/sec2 

MODAL   0. 0.0000E+00 0.0000E+00 0.0000E+00 
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Section 1  Page Avenue Bridge Analysis Input 

Table:  Material Properties 01 - General, Part 1 of 2 

Table:  Material Properties 01 - General, Part 1 of 2 

Material Type SymType TempDepen
d 

Color GUID 

      

4000Psi Concrete Isotropic No Red  
A416Gr270 Tendon Uniaxial No Magenta  
A572Gr50 Steel Isotropic No Blue  
A615Gr60 Rebar Uniaxial No Gray8Dark  
A992Fy50 Steel Isotropic No Cyan  

ASTM A586 Steel Isotropic No Blue  
STAAD1 Steel Isotropic No Yellow D7D209AA-88D2-

4D08-A6D1-
DC069FD57107 

STAAD2 Other Isotropic No Blue 02574C1E-4D75-4112-
B3BD-9AF3D1778D8A 

 
 
Table:  Material Properties 01 - General, Part 2 of 2 

Table:  Material Properties 01 - General, Part 2 of 2 

Material Notes 
  

4000Psi Normalweight f'c = 4 ksi added 
12/30/2013 8:14:18 PM 

A416Gr270 ASTM A416 Grade 270 3/5/2016 
7:31:46 PM 

A572Gr50 ASTM A572 Grade 50 added 
1/5/2014 1:54:23 PM 

A615Gr60 ASTM A615 Grade 60 added 
1/5/2014 1:54:38 PM 

A992Fy50 ASTM A992 Fy=50 ksi added 
12/30/2013 8:14:18 PM 

ASTM A586 ASTM A36 added 1/5/2014 9:29:36 
PM 

STAAD1 ASTM A36 added 12/30/2013 
8:14:18 PM 

STAAD2 ASTM A36 added 12/30/2013 
8:14:18 PM 

 
 
Table:  Material Properties 02 - Basic Mechanical Properties 

Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/in3 Kip-s2/in4 Kip/in2 Kip/in2  1/F 

4000Psi 8.6806E-05 2.2483E-07 4110.347 1712.645 0.2 5.5000E-06 
A416Gr270 2.8356E-04 7.3446E-07 28500.   6.5000E-06 
A572Gr50 2.8356E-04 7.3446E-07 29000. 11153.846 0.3 6.5000E-06 
A615Gr60 2.8356E-04 7.3446E-07 29000.   6.5000E-06 
A992Fy50 2.8356E-04 7.3446E-07 29000. 11153.846 0.3 6.5000E-06 

ASTM A586 2.8356E-04 7.3446E-07 23000. 8846.154 0.3 6.5000E-06 
STAAD1 2.8300E-04 7.3299E-07 29000. 11153.846 0.3 0.0000E+00 
STAAD2 2.8300E-04 7.3299E-07 23000. 8846.154 0.3 0.0000E+00 
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Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Material Fy Fu EffFy EffFu SSCurveOpt SSHysType SHard 
 Kip/in2 Kip/in2 Kip/in2 Kip/in2    

A572Gr50 50. 65. 55. 71.5 Simple Kinematic 0.015 
A992Fy50 50. 65. 55. 71.5 Simple Kinematic 0.015 

ASTM A586 150. 220. 150. 220. Simple Kinematic 0.02 
STAAD1 36. 58. 54. 63.8 Simple Kinematic 0.02 

 
 
Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Material SMax SRup FinalSlope 
    

A572Gr50 0.11 0.17 -0.1 
A992Fy50 0.11 0.17 -0.1 

ASTM A586 0.14 0.2 -0.1 
STAAD1 0.14 0.2 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Material Fc LtWtConc SSCurveOpt SSHysType SFc SCap FinalSlope 
 Kip/in2       

4000Psi 5.201 No Mander Takeda 0.002219 0.005 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Table:  Material Properties 03b - Concrete 
Data, Part 2 of 2 

Material FAngle DAngle 
 Degrees Degrees 

4000Psi 0. 0. 

 
 
Table:  Frame Section Properties 01 - General, Part 1 of 8 

Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   in in in 

Cable ASTM A586 General 12. 12.  
FLBMS A572Gr50 I/Wide Flange 132.08 21.25 2.36 

LLATERALS A572Gr50 I/Wide Flange 14.78 15.5 1.09 
P4Beam 4000Psi Rectangular 115.7484 169.2912  
P4Col 4000Psi Rectangular 117.6 117.6  

Pier5Beam 4000Psi Rectangular 115.7484 169.2912  
Pier5Col 4000Psi Rectangular 117.6 117.6  

R1-2 R14-15 A572Gr50 SD Section    
R1LATERAL A572Gr50 SD Section    
R3-4 R12-13 A572Gr50 SD Section    
R5-7 R9-11 A572Gr50 SD Section    

R8 A572Gr50 SD Section    
STDSEC1 STAAD1 General 20.7581 20.7581  
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Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   in in in 

STDSEC10 STAAD1 General 19.9048 19.9048  
STDSEC11 STAAD1 General 20.6616 20.6616  
STDSEC12 STAAD1 General 21.3026 21.3026  
STDSEC13 STAAD1 General 21.3026 21.3026  
STDSEC14 STAAD1 General 21.3026 21.3026  
STDSEC15 STAAD1 General 10.5641 10.5641  
STDSEC16 STAAD1 General 10.5641 10.5641  
STDSEC17 STAAD1 General 9.6224 9.6224  
STDSEC18 STAAD1 General 9.6224 9.6224  
STDSEC19 STAAD2 General 3.2863 3.2863  
STDSEC2 STAAD1 General 20.7581 20.7581  
STDSEC3 STAAD1 General 19.1259 19.1259  
STDSEC4 STAAD1 General 20.7581 20.7581  
STDSEC5 STAAD1 General 20.7581 20.7581  
STDSEC6 STAAD1 General 21.3026 21.3026  
STDSEC7 STAAD1 General 21.3026 21.3026  
STDSEC8 STAAD1 General 21.3026 21.3026  
STDSEC9 STAAD1 General 20.6616 20.6616  

TGDRT1-T3 T13-
T15 

A572Gr50 SD Section    

TGDRT4-6 T10-12 A572Gr50 SD Section    
TGDRT7-9 A572Gr50 SD Section    

ULATERALS A572Gr50 SD Section    
W30X108 A992Fy50 I/Wide Flange 29.83 10.475 0.76 

 
 
Table:  Frame Section Properties 01 - General, Part 2 of 8 

Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 in in in in2 in4 in4 

Cable    10.84 18.7 9.35 
FLBMS 0.75 21.25 2.36 195.82 191.03 551106.29 

LLATERALS 0.68 15.5 1.09 42.36 14.06 1699.9 
P4Beam    19595.19 50501943.52 21877521.87 
P4Col    13829.76 26936101.85 15938521.8 

Pier5Beam    19595.19 50501943.52 21877521.87 
Pier5Col    13829.76 26936101.85 15938521.8 

R1-2 R14-15    453.87 305721.39 326410.59 
R1LATERAL    60.14 5208.8 6290.04 
R3-4 R12-13    453.87 305721.39 326410.59 
R5-7 R9-11    426.47 282345.1 315696.62 

R8    396.07 264856.45 277132.38 
STDSEC1    430.9 0. 1013310. 

STDSEC10    396.2 0. 277076. 
STDSEC11    426.9 0. 316037. 
STDSEC12    453.8 0. 326584. 
STDSEC13    453.8 0. 326584. 
STDSEC14    453.8 0. 326584. 
STDSEC15    111.6 0. 11675. 
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Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 in in in in2 in4 in4 

STDSEC16    111.6 0. 11675. 
STDSEC17    92.59 0. 17219. 
STDSEC18    92.59 0. 17219. 
STDSEC19    10.8 0. 813. 
STDSEC2    430.9 0. 1013310. 
STDSEC3    365.8 0. 762994. 
STDSEC4    430.9 0. 1013310. 
STDSEC5    430.9 0. 1013310. 
STDSEC6    453.8 0. 326584. 
STDSEC7    453.8 0. 326584. 
STDSEC8    453.8 0. 326584. 
STDSEC9    426.9 0. 316037. 

TGDRT1-T3 T13-
T15 

   430.71 426.42 1041044.8 

TGDRT4-6 T10-12    430.71 426.42 1041044.8 
TGDRT7-9    365.39 180.3 761409.98 

ULATERALS    60.14 5208.8 6290.04 
W30X108 0.545 10.475 0.76 31.7 4.99 4470. 

 
 
Table:  Frame Section Properties 01 - General, Part 3 of 8 

Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 in4 in4 in2 in2 in3 in3 

Cable 9.35 0. 1. 1. 1. 1. 
FLBMS 3778.79 0. 99.06 83.58 8345.04 355.65 

LLATERALS 676.83 0. 10.05 28.16 230.03 87.33 
P4Beam 46799035.3 0. 16329.32 16329.32 378018.56 552882.08 
P4Col 15938521.8 0. 11524.8 11524.8 271063.3 271063.3 

Pier5Beam 46799035.3 0. 16329.32 16329.32 378018.56 552882.08 
Pier5Col 15938521.8 0. 11524.8 11524.8 271063.3 271063.3 

R1-2 R14-15 136506.3 0. 272.46 199.26 9111.59 6361.5 
R1LATERAL 2582.86 0. 44.03 14.16 423.79 327.98 
R3-4 R12-13 136506.3 0. 272.46 199.26 9111.59 6361.5 
R5-7 R9-11 124007.08 0. 245.82 197.1 8812.53 5833.38 

R8 120157.28 0. 242.25 165.26 7820.87 5652.28 
STDSEC1 0. 0. 0. 0. 0. 0. 

STDSEC10 0. 0. 0. 0. 0. 0. 
STDSEC11 0. 0. 0. 0. 0. 0. 
STDSEC12 0. 0. 0. 0. 0. 0. 
STDSEC13 0. 0. 0. 0. 0. 0. 
STDSEC14 0. 0. 0. 0. 0. 0. 
STDSEC15 0. 0. 0. 0. 0. 0. 
STDSEC16 0. 0. 0. 0. 0. 0. 
STDSEC17 0. 0. 0. 0. 0. 0. 
STDSEC18 0. 0. 0. 0. 0. 0. 
STDSEC19 0. 0. 0. 0. 0. 0. 
STDSEC2 0. 0. 0. 0. 0. 0. 
STDSEC3 0. 0. 0. 0. 0. 0. 
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Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 in4 in4 in2 in2 in3 in3 

STDSEC4 0. 0. 0. 0. 0. 0. 
STDSEC5 0. 0. 0. 0. 0. 0. 
STDSEC6 0. 0. 0. 0. 0. 0. 
STDSEC7 0. 0. 0. 0. 0. 0. 
STDSEC8 0. 0. 0. 0. 0. 0. 
STDSEC9 0. 0. 0. 0. 0. 0. 

TGDRT1-T3 T13-
T15 

133303.4 0. 247.76 201.69 16373.37 6156.17 

TGDRT4-6 T10-12 133303.4 0. 247.76 201.69 16373.37 6156.17 
TGDRT7-9 124001.16 0. 235.13 135.15 12358.67 5726.58 

ULATERALS 2582.86 0. 44.03 14.16 423.79 327.98 
W30X108 146. 0. 16.26 13.27 299.7 27.88 

 
 
Table:  Frame Section Properties 01 - General, Part 4 of 8 

Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 in3 in3 in in in  

Cable 1. 1. 0.9996 0.9996 0. No 
FLBMS 9546.81 550.75 53.0505 4.3929  No 

LLATERALS 258.28 132.39 6.335 3.9974  No 
P4Beam 567027.84 829323.12 33.4137 48.8702  Yes 
P4Col 406594.94 406594.94 33.9482 33.9482  Yes 

Pier5Beam 567027.84 829323.12 33.4137 48.8702  Yes 
Pier5Col 406594.94 406594.94 33.9482 33.9482  Yes 

R1-2 R14-15 10995.36 7318.34 26.8174 17.3425  No 
R1LATERAL 542.53 379.33 10.2269 6.5534  No 
R3-4 R12-13 10995.36 7318.34 26.8174 17.3425  No 
R5-7 R9-11 10526.13 6733.13 27.2076 17.0521  No 

R8 9443.32 6436.84 26.4521 17.4177  No 
STDSEC1 0. 0. 48.4934 0. 0. No 

STDSEC10 0. 0. 26.4449 0. 0. No 
STDSEC11 0. 0. 27.2086 0. 0. No 
STDSEC12 0. 0. 26.8266 0. 0. No 
STDSEC13 0. 0. 26.8266 0. 0. No 
STDSEC14 0. 0. 26.8266 0. 0. No 
STDSEC15 0. 0. 10.2281 0. 0. No 
STDSEC16 0. 0. 10.2281 0. 0. No 
STDSEC17 0. 0. 13.6371 0. 0. No 
STDSEC18 0. 0. 13.6371 0. 0. No 
STDSEC19 0. 0. 8.6763 0. 0. No 
STDSEC2 0. 0. 48.4934 0. 0. No 
STDSEC3 0. 0. 45.6708 0. 0. No 
STDSEC4 0. 0. 48.4934 0. 0. No 
STDSEC5 0. 0. 48.4934 0. 0. No 
STDSEC6 0. 0. 26.8266 0. 0. No 
STDSEC7 0. 0. 26.8266 0. 0. No 
STDSEC8 0. 0. 26.8266 0. 0. No 
STDSEC9 0. 0. 27.2086 0. 0. No 
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Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 in3 in3 in in in  

TGDRT1-T3 T13-
T15 

19224.14 7001.88 49.1636 17.5926  No 

TGDRT4-6 T10-12 19224.14 7001.88 49.1636 17.5926  No 
TGDRT7-9 14943.5 6326.83 45.649 18.4219  No 

ULATERALS 542.53 379.33 10.2269 6.5534  No 
W30X108 346. 43.9 11.8747 2.1461  No 

 
 
Table:  Frame Section Properties 01 - General, Part 5 of 8 

Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/in   

Cable No Cyan 96.385 0.2496 No 1. 
FLBMS No White 1029.448 2.6664 No 1. 

LLATERALS No White 285.956 0.7406 No 1. 
P4Beam No Gray8Dark 1854.997 4.8046 No 1. 
P4Col No Green 1757.783 4.5528 No 1. 

Pier5Beam No Magenta 1854.997 4.8046 No 1. 
Pier5Col No Gray8Dark 1754.872 4.5453 No 1. 

R1-2 R14-15 No White 775.511 2.0086 No 1. 
R1LATERAL No White 37.195 0.0963 No 1. 
R3-4 R12-13 No White 519.074 1.3444 No 1. 
R5-7 R9-11 No White 574.544 1.4881 No 1. 

R8 No White 154.893 0.4012 No 1. 
STDSEC1 No Cyan 27.606 0.0715 No 1. 

STDSEC10 No Magenta 0. 0. No 1. 
STDSEC11 No Yellow 0. 0. No 1. 
STDSEC12 No Gray8Dark 0. 0. No 1. 
STDSEC13 No Blue 0. 0. No 1. 
STDSEC14 No Green 0. 0. No 1. 
STDSEC15 No Cyan 0. 0. No 1. 
STDSEC16 No Red 0. 0. No 1. 
STDSEC17 No Magenta 0. 0. No 1. 
STDSEC18 No Yellow 0. 0. No 1. 
STDSEC19 No Gray8Dark 0. 0. No 1. 
STDSEC2 No Red 0. 0. No 1. 
STDSEC3 No Magenta 0. 0. No 1. 
STDSEC4 No Yellow 0. 0. No 1. 
STDSEC5 No Gray8Dark 20.404 0.0528 No 1. 
STDSEC6 No Blue 7.905 0.0205 No 1. 
STDSEC7 No Green 0. 0. No 1. 
STDSEC8 No Cyan 0. 0. No 1. 
STDSEC9 No Red 0. 0. No 1. 

TGDRT1-T3 T13-
T15 

No White 657.549 1.7031 No 1. 

TGDRT4-6 T10-12 No White 818.63 2.1203 No 1. 
TGDRT7-9 No White 240.673 0.6234 No 1. 

ULATERALS No White 594.731 1.5404 No 1. 
W30X108 No Green 590.479 1.5294 Yes 1. 
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Table:  Frame Section Properties 01 - General, Part 6 of 8 

Table:  Frame Section Properties 01 - General, Part 6 of 8 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

Cable 1. 1. 1. 1. 1. 1. 
FLBMS 1. 1. 1. 1. 1. 1. 

LLATERALS 1. 1. 1. 1. 1. 1. 
P4Beam 1. 1. 1. 1. 1. 1. 
P4Col 1. 1. 1. 1. 1. 1. 

Pier5Beam 1. 1. 1. 1. 1. 1. 
Pier5Col 1. 1. 1. 1. 1. 1. 

R1-2 R14-15 1. 1. 1. 1. 1. 1. 
R1LATERAL 1. 1. 1. 1. 1. 1. 
R3-4 R12-13 1. 1. 1. 1. 1. 1. 
R5-7 R9-11 1. 1. 1. 1. 1. 1. 

R8 1. 1. 1. 1. 1. 1. 
STDSEC1 1. 1. 1. 1. 1. 1. 

STDSEC10 1. 1. 1. 1. 1. 1. 
STDSEC11 1. 1. 1. 1. 1. 1. 
STDSEC12 1. 1. 1. 1. 1. 1. 
STDSEC13 1. 1. 1. 1. 1. 1. 
STDSEC14 1. 1. 1. 1. 1. 1. 
STDSEC15 1. 1. 1. 1. 1. 1. 
STDSEC16 1. 1. 1. 1. 1. 1. 
STDSEC17 1. 1. 1. 1. 1. 1. 
STDSEC18 1. 1. 1. 1. 1. 1. 
STDSEC19 1. 1. 1. 1. 1. 1. 
STDSEC2 1. 1. 1. 1. 1. 1. 
STDSEC3 1. 1. 1. 1. 1. 1. 
STDSEC4 1. 1. 1. 1. 1. 1. 
STDSEC5 1. 1. 1. 1. 1. 1. 
STDSEC6 1. 1. 1. 1. 1. 1. 
STDSEC7 1. 1. 1. 1. 1. 1. 
STDSEC8 1. 1. 1. 1. 1. 1. 
STDSEC9 1. 1. 1. 1. 1. 1. 

TGDRT1-T3 T13-
T15 

1. 1. 1. 1. 1. 1. 

TGDRT4-6 T10-12 1. 1. 1. 1. 1. 1. 
TGDRT7-9 1. 1. 1. 1. 1. 1. 

ULATERALS 1. 1. 1. 1. 1. 1. 
W30X108 1. 1. 1. 1. 1. 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 7 of 8 

Table:  Frame Section Properties 01 - General, Part 7 of 8 

SectionName WMod SectInFile FileName GUID 
     

Cable 1.    
FLBMS 1.    

LLATERALS 1.    
P4Beam 1.    
P4Col 1.    
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Table:  Frame Section Properties 01 - General, Part 7 of 8 

SectionName WMod SectInFile FileName GUID 
     

Pier5Beam 1.    
Pier5Col 1.    

R1-2 R14-15 1.    
R1LATERAL 1.    
R3-4 R12-13 1.    
R5-7 R9-11 1.    

R8 1.    
STDSEC1 1.    

STDSEC10 1.    
STDSEC11 1.    
STDSEC12 1.    
STDSEC13 1.    
STDSEC14 1.    
STDSEC15 1.    
STDSEC16 1.    
STDSEC17 1.    
STDSEC18 1.    
STDSEC19 1.    
STDSEC2 1.    
STDSEC3 1.    
STDSEC4 1.    
STDSEC5 1.    
STDSEC6 1.    
STDSEC7 1.    
STDSEC8 1.    
STDSEC9 1.    

TGDRT1-T3 T13-
T15 

1.    

TGDRT4-6 T10-12 1.    
TGDRT7-9 1.    

ULATERALS 1.    
W30X108 1. W30X108 c:\program files\computers and 

structures\sap2000 18\sections.pro 
 

 
 
Table:  Frame Section Properties 01 - General, Part 8 of 8 

Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

Cable Added 5/30/2016 10:27:21 AM 
FLBMS Added 1/6/2014 5:03:09 PM 

LLATERALS Added 1/6/2014 4:44:00 PM 
P4Beam Added 3/5/2016 8:05:10 PM 
P4Col Added 3/5/2016 8:10:25 PM 

Pier5Beam Added 3/5/2016 8:23:10 PM 
Pier5Col Added 3/5/2016 8:23:33 PM 

R1-2 R14-15 Added 1/5/2014 9:01:13 PM 
R1LATERAL Added 1/13/2014 11:02:26 PM 
R3-4 R12-13 Added 1/5/2014 9:09:56 PM 
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Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

R5-7 R9-11 Added 1/5/2014 9:13:37 PM 
R8 Added 1/5/2014 9:18:02 PM 

STDSEC1 Added 12/30/2013 8:15:26 PM 
STDSEC10 Added 12/30/2013 8:15:26 PM 
STDSEC11 Added 12/30/2013 8:15:26 PM 
STDSEC12 Added 12/30/2013 8:15:26 PM 
STDSEC13 Added 12/30/2013 8:15:26 PM 
STDSEC14 Added 12/30/2013 8:15:26 PM 
STDSEC15 Added 12/30/2013 8:15:26 PM 
STDSEC16 Added 12/30/2013 8:15:26 PM 
STDSEC17 Added 12/30/2013 8:15:26 PM 
STDSEC18 Added 12/30/2013 8:15:26 PM 
STDSEC19 Added 12/30/2013 8:15:26 PM 
STDSEC2 Added 12/30/2013 8:15:26 PM 
STDSEC3 Added 12/30/2013 8:15:26 PM 
STDSEC4 Added 12/30/2013 8:15:26 PM 
STDSEC5 Added 12/30/2013 8:15:26 PM 
STDSEC6 Added 12/30/2013 8:15:26 PM 
STDSEC7 Added 12/30/2013 8:15:26 PM 
STDSEC8 Added 12/30/2013 8:15:26 PM 
STDSEC9 Added 12/30/2013 8:15:26 PM 

TGDRT1-T3 T13-
T15 

Added 1/5/2014 1:51:50 PM 

TGDRT4-6 T10-12 Added 1/5/2014 8:34:10 PM 
TGDRT7-9 Added 1/5/2014 8:43:17 PM 

ULATERALS Added 1/12/2014 9:20:26 PM 
W30X108 Imported 3/10/2016 2:49:32 PM 

from SECTIONS.PRO 

 
 
Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

SectionNam
e 

RebarMatL RebarMatC ReinfConfig LatReinf Cov
er 

NumBars3D
ir 

NumBars2D
ir 

     in   

P4Beam A615Gr60 A615Gr60 Rectangular Ties 1.5 3 3 
P4Col A615Gr60 A615Gr60 Rectangular Ties 1.5 3 3 

Pier5Beam A615Gr60 A615Gr60 Rectangular Ties 1.5 3 3 
Pier5Col A615Gr60 A615Gr60 Rectangular Ties 1.5 3 3 

 
 
Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

SectionNam
e 

BarSizeL BarSizeC SpacingC NumCBars2 NumCBars3 ReinfType 

   in    

P4Beam #9 #4 6. 3 3 Design 
P4Col #9 #4 6. 3 3 Design 

Pier5Beam #9 #4 6. 3 3 Design 
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Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

SectionNam
e 

BarSizeL BarSizeC SpacingC NumCBars2 NumCBars3 ReinfType 

   in    

Pier5Col #9 #4 6. 3 3 Design 

 
 
Table:  Link Property Definitions 01 - General, Part 1 of 3 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Link LinkType Mass Weight RotInert1 RotInert2 RotInert3 
  Kip-s2/in Kip Kip-in-s2 Kip-in-s2 Kip-in-s2 

Pier4F Linear 0. 0. 0. 0. 0. 
Pier5E Linear 0. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 2 of 3 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Link DefLength DefArea PDM2I PDM2J PDM3I PDM3J 
 in in2     

Pier4F 12. 144. 0. 0. 0. 0. 
Pier5E 12. 144. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 3 of 3 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Link Color GUID Notes 
    

Pier4F Cyan 30d405fd-730f-41e3-
bbea-244cda3e9650 

Added 3/5/2016 8:18:58 PM 

Pier5E Cyan a2bde322-04e3-446c-
ba4c-3fb7596045e1 

Added 3/5/2016 8:18:58 PM 

 
 
Table:  Link Property Definitions 02 - Linear 

Table:  Link Property Definitions 02 - Linear 

Link DOF Fixed TransKE RotKE TransCE RotCE DJ 
   Kip/in Kip-in/rad Kip-s/in Kip-in-s/rad in 

Pier4F U1 No 8333.3333  0.   
Pier4F U2 No 8333.3333  0.  0. 
Pier4F U3 No 8333.3333  0.  0. 
Pier4F R1 No  0.  0.  
Pier4F R2 No  0.  0.  
Pier4F R3 No  0.  0.  
Pier5E U1 No 8333.3333  0.   
Pier5E U2 No 8333.3333  0.  0. 
Pier5E U3 No 8333.3333  0.  0. 
Pier5E R1 No  0.  0.  
Pier5E R2 No  0.  0.  
Pier5E R3 No  0.  0.  
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Table:  Area Section Properties, Part 1 of 4 

Table:  Area Section Properties, Part 1 of 4 

Section Material MatAn
gle 

AreaType Type DrillDOF Thickness BendThick 

  Degree
s 

   in in 

CONCDEC
K 

4000Psi 0. Shell Shell-Thin Yes 8.6616 8.6616 

P4Shaft 4000Psi 0. Shell Shell-Thick Yes 136.2 136.2 
Pier5Shaft 4000Psi 0. Shell Shell-Thick Yes 145.44 145.44 

 
 
Table:  Area Section Properties, Part 2 of 4 

Table:  Area Section Properties, Part 2 of 4 

Section Arc InComp CoordSys Color TotalWt TotalMass 
 Degrees    Kip Kip-s2/in 

CONCDEC
K 

   Red 6047.367 13.6201 

P4Shaft    Green 2726.724 7.0624 
Pier5Shaft    Green 7775.441 20.139 

 
 
Table:  Area Section Properties, Part 3 of 4 

Table:  Area Section Properties, Part 3 of 4 

Section F11Mod F22Mod F12Mod M11Mod M22Mod M12Mod V13Mod 
        

CONCDEC
K 

1. 1. 1. 1. 1. 1. 1. 

P4Shaft 1. 1. 1. 1. 1. 1. 1. 
Pier5Shaft 1. 1. 1. 1. 1. 1. 1. 

 
 
Table:  Area Section Properties, Part 4 of 4 

Table:  Area Section Properties, Part 4 of 4 

Section V23Mod MMod WMod GUID Notes 
      

CONCDEC
K 

1. 1. 1.15 758d35c5-1090-4412-
961e-a55c3a7a8dcf 

Added 3/13/2016 4:57:39 PM 

P4Shaft 1. 1. 1. e23ce15c-c909-437f-
a64a-f4b7fa56ca94 

Added 3/5/2016 8:14:07 PM 

Pier5Shaft 1. 1. 1. 53f15048-2c5b-4fcb-
a24a-21a06b537a20 

Added 3/5/2016 8:30:26 PM 
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Section 2  Page Avenue Bridge Load Cases 

Table:  Load Case Definitions, Part 1 of 3 

Table:  Load Case Definitions, Part 1 of 3 

Case Type InitialCond ModalCase BaseCase MassSource DesTypeOpt 
       

DEAD NonStatic Zero    Prog Det 
MODAL LinModal DEAD    Prog Det 

LIVELOAD LinMoving DEAD    Prog Det 

 
 
Table:  Load Case Definitions, Part 2 of 3 

Table:  Load Case Definitions, Part 2 of 3 

Case DesignType DesActOpt DesignAct AutoType RunCase CaseStatus 
       

DEAD DEAD Prog Det Non-
Composite 

None Yes Finished 

MODAL OTHER Prog Det Other None Yes Finished 
LIVELOAD VEHICLE 

LIVE 
Prog Det Short-Term 

Composite 
None Yes Finished 

 
 
Table:  Load Case Definitions, Part 3 of 3 

Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

DEAD   
MODAL   

LIVELOAD   

 
 
Table:  Case - Static 1 - Load Assignments 

Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 
    

DEAD Load pattern DEAD 1. 

 
 
Table:  Case - Static 2 - Nonlinear Load Application 

Table:  Case - Static 2 - Nonlinear Load Application 

Case LoadApp MonitorDOF MonitorJt 
    

DEAD Full Load U1 59 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Case Unloading GeoNonLin ResultsSave MaxTotal MaxNull 
      

DEAD Unload Entire None Final State 200 50 
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Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Case MaxIterCS MaxIterNR ItConvTol UseEvStep EvLumpTol LSPerIter 
       

DEAD 10 40 1.0000E-04 Yes 0.01 20 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Case LSTol LSStepFact StageSave StageMinIns StageMi
nTD 

      

DEAD 0.1 1.618    

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Case FrameTC FrameHinge CableTC LinkTC LinkOther TimeDepMa
t 

       

DEAD Yes Yes Yes Yes Yes  

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TFMaxIter TFTol TFAccelFact TFNoStop 
     

DEAD 10 0.01 1. No 

 
 
Table:  Case - Moving Load 1 - Lane Assignments 

Table:  Case - Moving Load 1 - Lane Assignments 

Case AssignNum VehClass ScaleFactor MinLoaded MaxLoaded NumLanes 
       

LIVELOAD 1 HS20LOADING 1. 1 7 14 

 
 
Table:  Case - Moving Load 2 - Lanes Loaded 

Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 
   

LIVELOAD 1 CTRLANE2 
LIVELOAD 1 LTLANE21 
LIVELOAD 1 LTLANE22 
LIVELOAD 1 LTLANE23 
LIVELOAD 1 M1 
LIVELOAD 1 M2 
LIVELOAD 1 M3 
LIVELOAD 1 M4 
LIVELOAD 1 M5 
LIVELOAD 1 M6 
LIVELOAD 1 M7 
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Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 
   

LIVELOAD 1 RTLANE21 
LIVELOAD 1 RTLANE22 
LIVELOAD 1 RTLANE23 

 
 
Table:  Case - Moving Load 3 - MultiLane Factors 

Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 1 1. 
LIVELOAD 2 1. 
LIVELOAD 3 0.9 
LIVELOAD 4 0.75 
LIVELOAD 5 0.75 
LIVELOAD 6 0.75 
LIVELOAD 7 0.75 
LIVELOAD 8 0.75 
LIVELOAD 9 0.75 
LIVELOAD 10 0.75 
LIVELOAD 11 0.75 
LIVELOAD 12 0.75 
LIVELOAD 13 0.75 
LIVELOAD 14 0.75 
LIVELOAD 15 0.75 
LIVELOAD 16 0.75 
LIVELOAD 17 0.75 
LIVELOAD 18 0.75 
LIVELOAD 19 0.75 
LIVELOAD 20 0.75 
LIVELOAD 21 0.75 
LIVELOAD 22 0.75 
LIVELOAD 23 0.75 
LIVELOAD 24 0.75 
LIVELOAD 25 0.75 
LIVELOAD 26 0.75 
LIVELOAD 27 0.75 
LIVELOAD 28 0.75 
LIVELOAD 29 0.75 
LIVELOAD 30 0.75 
LIVELOAD 31 0.75 
LIVELOAD 32 0.75 
LIVELOAD 33 0.75 
LIVELOAD 34 0.75 
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Table:  Case - Modal 1 - General, Part 1 of 2 

Table:  Case - Modal 1 - General, Part 1 of 2 

Case ModeType MaxNumMo
des 

MinNumMo
des 

EigenShift EigenCutoff EigenTol 

    Cyc/sec Cyc/sec  

MODAL Eigen 30 1 0.0000E+00 0.0000E+00 1.0000E-09 

 
 
Table:  Case - Modal 1 - General, Part 2 of 2 

Table:  Case - Modal 1 - General, 
Part 2 of 2 

Case AutoShift 
  

MODAL Yes 

 
 
Section 3  Page Avenue Bridge Modal Analysis Output 

Table:  Modal Load Participation Ratios 

Table:  Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 
   Percent Percent 

MODAL Acceleration UX 99.1302 83.6279 
MODAL Acceleration UY 99.4415 50.6298 
MODAL Acceleration UZ 99.1698 43.8486 

 
 
Table:  Modal Participating Mass Ratios, Part 1 of 3 

Table:  Modal Participating Mass Ratios, Part 1 of 3 

OutputCase StepType StepNum Period UX UY UZ SumUX 
   Sec     

MODAL Mode 1. 3.533745 6.629E-12 0.0849 9.083E-12 6.629E-12 
MODAL Mode 2. 1.976926 0.0168 2.077E-10 2.280E-04 0.0168 
MODAL Mode 3. 1.280837 4.395E-10 0.1865 1.186E-11 0.0168 
MODAL Mode 4. 1.116848 4.501E-10 0.1422 1.779E-10 0.0168 
MODAL Mode 5. 0.979255 0.0017 9.242E-11 0.0187 0.0186 
MODAL Mode 6. 0.75136 0.6486 5.189E-10 0.07 0.6671 
MODAL Mode 7. 0.71314 3.411E-08 0.0054 3.538E-08 0.6671 
MODAL Mode 8. 0.683397 0.1361 5.161E-11 0.3258 0.8033 
MODAL Mode 9. 0.534033 0.0036 7.179E-11 0.0011 0.8068 
MODAL Mode 10. 0.513421 1.711E-09 0.0011 1.646E-11 0.8068 
MODAL Mode 11. 0.490411 9.205E-12 4.486E-04 1.621E-13 0.8068 
MODAL Mode 12. 0.455059 8.579E-11 0.0054 1.467E-10 0.8068 
MODAL Mode 13. 0.443201 4.146E-06 1.126E-10 2.570E-04 0.8068 
MODAL Mode 14. 0.380253 2.566E-09 3.083E-05 9.668E-09 0.8068 
MODAL Mode 15. 0.37541 6.070E-05 8.772E-15 0.0128 0.8069 
MODAL Mode 16. 0.363979 1.603E-04 4.290E-11 0.0025 0.807 
MODAL Mode 17. 0.361869 2.118E-08 3.445E-04 1.161E-08 0.807 
MODAL Mode 18. 0.32687 1.314E-09 0.0778 3.649E-11 0.807 
MODAL Mode 19. 0.309272 1.259E-05 1.051E-10 0.0016 0.807 
MODAL Mode 20. 0.29573 6.030E-06 1.246E-10 1.062E-04 0.8071 
MODAL Mode 21. 0.282586 4.867E-05 4.560E-11 7.825E-07 0.8071 
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Table:  Modal Participating Mass Ratios, Part 1 of 3 

OutputCase StepType StepNum Period UX UY UZ SumUX 
   Sec     

MODAL Mode 22. 0.27095 6.719E-06 1.130E-11 1.907E-04 0.8071 
MODAL Mode 23. 0.265724 3.022E-11 0.0022 3.794E-13 0.8071 
MODAL Mode 24. 0.263862 7.765E-05 1.920E-11 2.533E-05 0.8072 
MODAL Mode 25. 0.261846 1.529E-04 2.095E-11 1.154E-04 0.8073 
MODAL Mode 26. 0.256773 6.151E-04 7.526E-11 1.614E-05 0.808 
MODAL Mode 27. 0.255175 4.231E-04 5.611E-11 0.003 0.8084 
MODAL Mode 28. 0.254806 1.238E-08 1.326E-05 2.614E-09 0.8084 
MODAL Mode 29. 0.248466 0.0207 5.417E-10 0.0016 0.829 
MODAL Mode 30. 0.24688 0.0073 5.517E-10 5.800E-04 0.8363 

 
 
Table:  Modal Participating Mass Ratios, Part 2 of 3 

Table:  Modal Participating Mass Ratios, Part 2 of 3 

OutputCase StepType StepNum SumUY SumUZ RX RY RZ 
        

MODAL Mode 1. 0.0849 9.083E-12 0.3295 1.228E-10 0.0242 
MODAL Mode 2. 0.0849 2.280E-04 1.115E-09 0.0913 4.367E-13 
MODAL Mode 3. 0.2714 2.280E-04 0.2184 5.541E-11 0.0017 
MODAL Mode 4. 0.4136 2.280E-04 8.867E-04 2.791E-11 0.0245 
MODAL Mode 5. 0.4136 0.0189 1.126E-10 7.482E-04 1.241E-10 
MODAL Mode 6. 0.4136 0.0889 2.029E-11 0.0047 4.772E-12 
MODAL Mode 7. 0.419 0.0889 3.223E-04 9.621E-11 6.515E-06 
MODAL Mode 8. 0.419 0.4147 1.095E-10 0.0294 4.517E-12 
MODAL Mode 9. 0.419 0.4159 2.593E-10 0.0294 4.228E-10 
MODAL Mode 10. 0.4201 0.4159 0.0058 2.367E-09 0.0141 
MODAL Mode 11. 0.4205 0.4159 0.0014 1.129E-11 0.172 
MODAL Mode 12. 0.4259 0.4159 0.1466 1.110E-11 3.910E-05 
MODAL Mode 13. 0.4259 0.4161 3.413E-09 9.655E-04 1.961E-13 
MODAL Mode 14. 0.4259 0.4161 0.0015 4.269E-10 9.127E-04 
MODAL Mode 15. 0.4259 0.4289 1.809E-09 1.117E-04 7.358E-10 
MODAL Mode 16. 0.4259 0.4313 5.092E-11 0.0026 1.660E-12 
MODAL Mode 17. 0.4263 0.4313 2.974E-04 9.714E-09 2.151E-05 
MODAL Mode 18. 0.5041 0.4313 0.0082 3.058E-10 0.003 
MODAL Mode 19. 0.5041 0.4329 1.696E-11 2.360E-04 2.940E-13 
MODAL Mode 20. 0.5041 0.433 4.274E-12 0.0092 4.755E-12 
MODAL Mode 21. 0.5041 0.433 3.432E-13 0.0015 1.750E-11 
MODAL Mode 22. 0.5041 0.4332 1.703E-12 1.468E-05 3.361E-11 
MODAL Mode 23. 0.5063 0.4332 7.855E-04 9.303E-12 0.0023 
MODAL Mode 24. 0.5063 0.4333 1.188E-11 3.426E-04 1.031E-10 
MODAL Mode 25. 0.5063 0.4334 1.155E-10 3.762E-05 2.217E-10 
MODAL Mode 26. 0.5063 0.4334 4.015E-09 1.670E-04 1.997E-09 
MODAL Mode 27. 0.5063 0.4363 2.563E-08 3.160E-04 1.743E-09 
MODAL Mode 28. 0.5063 0.4363 0.0149 3.868E-09 6.879E-04 
MODAL Mode 29. 0.5063 0.4379 1.513E-08 0.0072 2.513E-07 
MODAL Mode 30. 0.5063 0.4385 5.875E-09 0.0019 4.623E-07 
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Table:  Modal Participating Mass Ratios, Part 3 of 3 

Table:  Modal Participating Mass Ratios, Part 3 of 3 

OutputCase StepType StepNum SumRX SumRY SumRZ 
      

MODAL Mode 1. 0.3295 1.228E-10 0.0242 
MODAL Mode 2. 0.3295 0.0913 0.0242 
MODAL Mode 3. 0.5479 0.0913 0.0258 
MODAL Mode 4. 0.5488 0.0913 0.0504 
MODAL Mode 5. 0.5488 0.0921 0.0504 
MODAL Mode 6. 0.5488 0.0968 0.0504 
MODAL Mode 7. 0.5491 0.0968 0.0504 
MODAL Mode 8. 0.5491 0.1262 0.0504 
MODAL Mode 9. 0.5491 0.1556 0.0504 
MODAL Mode 10. 0.5549 0.1556 0.0645 
MODAL Mode 11. 0.5563 0.1556 0.2365 
MODAL Mode 12. 0.7029 0.1556 0.2365 
MODAL Mode 13. 0.7029 0.1566 0.2365 
MODAL Mode 14. 0.7044 0.1566 0.2375 
MODAL Mode 15. 0.7044 0.1567 0.2375 
MODAL Mode 16. 0.7044 0.1593 0.2375 
MODAL Mode 17. 0.7047 0.1593 0.2375 
MODAL Mode 18. 0.7129 0.1593 0.2405 
MODAL Mode 19. 0.7129 0.1595 0.2405 
MODAL Mode 20. 0.7129 0.1687 0.2405 
MODAL Mode 21. 0.7129 0.1702 0.2405 
MODAL Mode 22. 0.7129 0.1703 0.2405 
MODAL Mode 23. 0.7136 0.1703 0.2428 
MODAL Mode 24. 0.7136 0.1706 0.2428 
MODAL Mode 25. 0.7136 0.1706 0.2428 
MODAL Mode 26. 0.7136 0.1708 0.2428 
MODAL Mode 27. 0.7136 0.1711 0.2428 
MODAL Mode 28. 0.7286 0.1711 0.2435 
MODAL Mode 29. 0.7286 0.1783 0.2435 
MODAL Mode 30. 0.7286 0.1802 0.2435 

 
 
Table:  Modal Participation Factors, Part 1 of 2 

Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNum Period UX UY UZ RX 
   Sec Kip-in Kip-in Kip-in Kip-in 

MODAL Mode 1. 3.533745 -0.000021 -2.307861 0.000024 2810.353501 
MODAL Mode 2. 1.976926 1.026159 0.000116 0.119445 -0.16394 
MODAL Mode 3. 1.280837 -0.000166 3.490172 0.000027 -2305.35551 
MODAL Mode 4. 1.116848 -0.000168 -3.034922 0.000106 158.079736 
MODAL Mode 5. 0.979255 0.328707 -0.000078 -1.081401 -0.051526 
MODAL Mode 6. 0.75136 -6.371025 -0.000162 2.093239 0.017718 
MODAL Mode 7. 0.71314 -0.001461 0.51043 0.001488 105.106651 
MODAL Mode 8. 0.683397 -2.9175 0.000055 -4.515669 -0.050749 
MODAL Mode 9. 0.534033 -0.475384 -0.000069 -0.264031 0.079317 
MODAL Mode 10. 0.513421 0.000328 -0.269804 0.000032 373.9699 
MODAL Mode 11. 0.490411 -0.000024 -0.173407 -3.185E-06 184.810063 
MODAL Mode 12. 0.455059 -0.000072 -0.031173 -0.000096 2019.910259 
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Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNum Period UX UY UZ RX 
   Sec Kip-in Kip-in Kip-in Kip-in 

MODAL Mode 13. 0.443201 -0.011073 0.000015 0.126817 -0.309579 
MODAL Mode 14. 0.380253 0.000398 -0.025102 -0.000778 207.814565 
MODAL Mode 15. 0.37541 0.064543 -0.000046 0.893642 0.219001 
MODAL Mode 16. 0.363979 -0.110055 -0.000052 0.393045 0.034855 
MODAL Mode 17. 0.361869 0.001149 0.137741 0.000852 -82.241247 
MODAL Mode 18. 0.32687 0.000286 -2.181944 0.000048 436.566749 
MODAL Mode 19. 0.309272 -0.036812 0.000079 -0.315586 -0.019626 
MODAL Mode 20. 0.29573 -0.006431 -0.000087 0.081543 0.009827 
MODAL Mode 21. 0.282586 0.060323 0.000055 0.006998 -0.003236 
MODAL Mode 22. 0.27095 0.013321 0.000043 0.109248 -0.010384 
MODAL Mode 23. 0.265724 -0.000044 0.576754 -4.873E-06 88.382205 
MODAL Mode 24. 0.263862 -0.067145 -0.000032 -0.039814 -0.017611 
MODAL Mode 25. 0.261846 -0.099125 -0.000048 -0.084984 -0.04972 
MODAL Mode 26. 0.256773 -0.202671 -0.000054 -0.031786 -0.313682 
MODAL Mode 27. 0.255175 -0.168682 -0.000023 -0.430212 -0.792122 
MODAL Mode 28. 0.254806 0.000884 -0.003492 -0.000404 605.492482 
MODAL Mode 29. 0.248466 1.15683 0.000219 0.312479 -0.610379 
MODAL Mode 30. 0.24688 -0.67921 -0.000194 0.190517 0.377104 

 
 
Table:  Modal Participation Factors, Part 2 of 2 

Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-in Kip-in Kip-in-s2 Kip-in 

MODAL Mode 1. -0.269969 4062.685631 1. 3.1615 
MODAL Mode 2. -7362.2374 -0.007719 1. 10.1013 
MODAL Mode 3. 0.181281 1437.708146 1. 24.0642 
MODAL Mode 4. 0.128649 4145.154282 1. 31.6499 
MODAL Mode 5. -666.212709 0.311856 1. 41.1688 
MODAL Mode 6. -1668.58695 -0.018657 1. 69.9299 
MODAL Mode 7. 0.239022 166.434273 1. 77.6265 
MODAL Mode 8. -4177.1387 0.08472 1. 84.5306 
MODAL Mode 9. -4177.5233 0.621437 1. 138.4277 
MODAL Mode 10. 1.185181 3408.11093 1. 149.766 
MODAL Mode 11. 0.081882 -9652.8256 1. 164.1493 
MODAL Mode 12. -0.080946 474.668957 1. 190.6444 
MODAL Mode 13. 758.106385 -0.067403 1. 200.9825 
MODAL Mode 14. 0.502576 -157.598644 1. 273.0331 
MODAL Mode 15. 258.188574 0.042046 1. 280.1229 
MODAL Mode 16. 1236.737159 0.083719 1. 297.9936 
MODAL Mode 17. 2.400297 -352.754096 1. 301.4785 
MODAL Mode 18. 0.425885 1296.694034 1. 369.4968 
MODAL Mode 19. 372.109756 -0.012365 1. 412.7406 
MODAL Mode 20. 2340.922998 -0.070397 1. 451.409 
MODAL Mode 21. -953.211497 0.114573 1. 494.3773 
MODAL Mode 22. 91.605574 0.12449 1. 537.7528 
MODAL Mode 23. -0.074419 1012.947242 1. 559.1123 
MODAL Mode 24. -450.238548 -0.257248 1. 567.0317 
MODAL Mode 25. -149.706913 -0.351924 1. 575.7971 
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Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-in Kip-in Kip-in-s2 Kip-in 

MODAL Mode 26. -316.334478 -1.101688 1. 598.7701 
MODAL Mode 27. -434.412754 -1.054492 1. 606.2942 
MODAL Mode 28. 1.515834 668.38277 1. 608.0492 
MODAL Mode 29. 2069.969389 12.159519 1. 639.4774 
MODAL Mode 30. -1069.38874 -16.531124 1. 647.7196 

 
 
Table:  Modal Periods And Frequencies 

Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 
   Sec Cyc/sec rad/sec rad2/sec2 

MODAL Mode 1. 3.533745 2.8299E-01 1.7781E+00 3.1615E+00 
MODAL Mode 2. 1.976926 5.0584E-01 3.1783E+00 1.0101E+01 
MODAL Mode 3. 1.280837 7.8074E-01 4.9055E+00 2.4064E+01 
MODAL Mode 4. 1.116848 8.9538E-01 5.6258E+00 3.1650E+01 
MODAL Mode 5. 0.979255 1.0212E+00 6.4163E+00 4.1169E+01 
MODAL Mode 6. 0.75136 1.3309E+00 8.3624E+00 6.9930E+01 
MODAL Mode 7. 0.71314 1.4022E+00 8.8106E+00 7.7627E+01 
MODAL Mode 8. 0.683397 1.4633E+00 9.1941E+00 8.4531E+01 
MODAL Mode 9. 0.534033 1.8725E+00 1.1766E+01 1.3843E+02 
MODAL Mode 10. 0.513421 1.9477E+00 1.2238E+01 1.4977E+02 
MODAL Mode 11. 0.490411 2.0391E+00 1.2812E+01 1.6415E+02 
MODAL Mode 12. 0.455059 2.1975E+00 1.3807E+01 1.9064E+02 
MODAL Mode 13. 0.443201 2.2563E+00 1.4177E+01 2.0098E+02 
MODAL Mode 14. 0.380253 2.6298E+00 1.6524E+01 2.7303E+02 
MODAL Mode 15. 0.37541 2.6638E+00 1.6737E+01 2.8012E+02 
MODAL Mode 16. 0.363979 2.7474E+00 1.7262E+01 2.9799E+02 
MODAL Mode 17. 0.361869 2.7634E+00 1.7363E+01 3.0148E+02 
MODAL Mode 18. 0.32687 3.0593E+00 1.9222E+01 3.6950E+02 
MODAL Mode 19. 0.309272 3.2334E+00 2.0316E+01 4.1274E+02 
MODAL Mode 20. 0.29573 3.3815E+00 2.1246E+01 4.5141E+02 
MODAL Mode 21. 0.282586 3.5387E+00 2.2235E+01 4.9438E+02 
MODAL Mode 22. 0.27095 3.6907E+00 2.3189E+01 5.3775E+02 
MODAL Mode 23. 0.265724 3.7633E+00 2.3646E+01 5.5911E+02 
MODAL Mode 24. 0.263862 3.7899E+00 2.3812E+01 5.6703E+02 
MODAL Mode 25. 0.261846 3.8190E+00 2.3996E+01 5.7580E+02 
MODAL Mode 26. 0.256773 3.8945E+00 2.4470E+01 5.9877E+02 
MODAL Mode 27. 0.255175 3.9189E+00 2.4623E+01 6.0629E+02 
MODAL Mode 28. 0.254806 3.9245E+00 2.4659E+01 6.0805E+02 
MODAL Mode 29. 0.248466 4.0247E+00 2.5288E+01 6.3948E+02 
MODAL Mode 30. 0.24688 4.0505E+00 2.5450E+01 6.4772E+02 
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Table:  Program Control, Part 1 of 2 

Table:  Program Control, Part 1 of 2 

ProgramNa
me 

Version ProgLevel LicenseNum LicenseOS LicenseSC LicenseHT CurrUnit
s 

        

SAP2000 18.1.1 Advanced 2010*1GR
WHLW4599

V5FQ 

No No No Kip, in, F 

 
 
Table:  Program Control, Part 2 of 2 

Table:  Program Control, Part 2 of 2 

SteelCode ConcCode AlumCode ColdCode RegenHinge 
     

AISC360-05/IBC2006 ACI 318-08/IBC2009 AA-ASD 2000 AISI-ASD96 Yes 
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Section 1  Page Avenue Bridge Analysis Input 

Table:  Material Properties 01 - General, Part 1 of 2 

Table:  Material Properties 01 - General, Part 1 of 2 

Material Type SymType TempDepen
d 

Color GUID 

      

4000Psi Concrete Isotropic No Red  
A416Gr270 Tendon Uniaxial No Magenta  
A572Gr50 Steel Isotropic No Blue  
A615Gr60 Rebar Uniaxial No Gray8Dark  
A992Fy50 Steel Isotropic No Cyan  

ASTM A586 Steel Isotropic No Blue  
STAAD1 Steel Isotropic No Yellow D7D209AA-88D2-

4D08-A6D1-
DC069FD57107 

STAAD2 Other Isotropic No Blue 02574C1E-4D75-4112-
B3BD-9AF3D1778D8A 

 
 
Table:  Material Properties 01 - General, Part 2 of 2 

Table:  Material Properties 01 - General, Part 2 of 2 

Material Notes 
  

4000Psi Normalweight f'c = 4 ksi added 
12/30/2013 8:14:18 PM 

A416Gr270 ASTM A416 Grade 270 3/5/2016 
7:31:46 PM 

A572Gr50 ASTM A572 Grade 50 added 
1/5/2014 1:54:23 PM 

A615Gr60 ASTM A615 Grade 60 added 
1/5/2014 1:54:38 PM 

A992Fy50 ASTM A992 Fy=50 ksi added 
12/30/2013 8:14:18 PM 

ASTM A586 ASTM A36 added 1/5/2014 9:29:36 
PM 

STAAD1 ASTM A36 added 12/30/2013 
8:14:18 PM 

STAAD2 ASTM A36 added 12/30/2013 
8:14:18 PM 

 
 
Table:  Material Properties 02 - Basic Mechanical Properties 

Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

4000Psi 2.5920E+02 9.6674E+01 18688320. 7786800. 0.2 5.5000E-06 
A416Gr270 8.4672E+02 3.1580E+02 590976000.   6.5000E-06 
A572Gr50 8.4672E+02 3.1580E+02 601344000. 231286153.8 0.3 6.5000E-06 
A615Gr60 8.4672E+02 3.1580E+02 601344000.   6.5000E-06 
A992Fy50 8.4672E+02 3.1580E+02 601344000. 231286153.8 0.3 6.5000E-06 

ASTM A586 8.4672E+02 3.1580E+02 476928000. 183433846.2 0.3 6.5000E-06 
STAAD1 8.4503E+02 3.1517E+02 601344000. 231286153.8 0.3 0.0000E+00 
STAAD2 8.4503E+02 3.1517E+02 476928000. 183433846.2 0.3 0.0000E+00 
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Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Material Fy Fu EffFy EffFu SSCurveOpt SSHysType SHard 
 Kip/ft2 Kip/ft2 Kip/ft2 Kip/ft2    

A572Gr50 1036800. 1347840. 1140480. 1482624. Simple Kinematic 0.015 
A992Fy50 1036800. 1347840. 1140480. 1482624. Simple Kinematic 0.015 

ASTM A586 3110400. 4561920. 3110400. 4561920. Simple Kinematic 0.02 
STAAD1 746496. 1202688. 1119744. 1322956.8 Simple Kinematic 0.02 

 
 
Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Material SMax SRup FinalSlope 
    

A572Gr50 0.11 0.17 -0.1 
A992Fy50 0.11 0.17 -0.1 

ASTM A586 0.14 0.2 -0.1 
STAAD1 0.14 0.2 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Material Fc LtWtConc SSCurveOpt SSHysType SFc SCap FinalSlope 
 Kip/ft2       

4000Psi 82944. No Mander Takeda 0.00221
9 

0.005 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Table:  Material Properties 03b - Concrete 
Data, Part 2 of 2 

Material FAngle DAngle 
 Degrees Degrees 

4000Psi 0. 0. 

 
 
Table:  Frame Section Properties 01 - General, Part 1 of 8 

Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

Cable ASTM A586 General 0.08333 0.08333  
FLBMS A572Gr50 I/Wide Flange 0.91722 0.14757 0.01639 

LLATERALS A572Gr50 I/Wide Flange 0.10264 0.10764 0.00757 
P4Beam 4000Psi Rectangular 0.80381 1.17563  
P4Col 4000Psi Rectangular 0.81667 0.81667  

Pier5Beam 4000Psi Rectangular 0.80381 1.17563  
Pier5Col 4000Psi Rectangular 0.81667 0.81667  

R1-2 R14-15 A572Gr50 SD Section    
R1LATERAL A572Gr50 SD Section    
R3-4 R12-13 A572Gr50 SD Section    
R5-7 R9-11 A572Gr50 SD Section    

R8 A572Gr50 SD Section    
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Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

STDSEC1 STAAD1 General 0.14415 0.14415  
STDSEC10 STAAD1 General 0.13823 0.13823  
STDSEC11 STAAD1 General 0.14348 0.14348  
STDSEC12 STAAD1 General 0.14793 0.14793  
STDSEC13 STAAD1 General 0.14793 0.14793  
STDSEC14 STAAD1 General 0.14793 0.14793  
STDSEC15 STAAD1 General 0.07336 0.07336  
STDSEC16 STAAD1 General 0.07336 0.07336  
STDSEC17 STAAD1 General 0.06682 0.06682  
STDSEC18 STAAD1 General 0.06682 0.06682  
STDSEC19 STAAD2 General 0.02282 0.02282  
STDSEC2 STAAD1 General 0.14415 0.14415  
STDSEC3 STAAD1 General 0.13282 0.13282  
STDSEC4 STAAD1 General 0.14415 0.14415  
STDSEC5 STAAD1 General 0.14415 0.14415  
STDSEC6 STAAD1 General 0.14793 0.14793  
STDSEC7 STAAD1 General 0.14793 0.14793  
STDSEC8 STAAD1 General 0.14793 0.14793  
STDSEC9 STAAD1 General 0.14348 0.14348  

TGDRT1-T3 T13-
T15 

A572Gr50 SD Section    

TGDRT4-6 T10-12 A572Gr50 SD Section    
TGDRT7-9 A572Gr50 SD Section    

ULATERALS A572Gr50 SD Section    
W30X108 A992Fy50 I/Wide Flange 0.20715 0.07274 0.00528 

 
 
Table:  Frame Section Properties 01 - General, Part 2 of 8 

Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

Cable    5.229E-04 4.349E-08 2.174E-08 
FLBMS 0.00521 0.14757 0.01639 0.0094 4.443E-07 0.001282 

LLATERALS 0.00472 0.10764 0.00757 0.002 3.271E-08 3.953E-06 
P4Beam    0.945 0.117451 0.05088 
P4Col    0.6669 0.062645 0.037068 

Pier5Beam    0.945 0.117451 0.05088 
Pier5Col    0.6669 0.062645 0.037068 

R1-2 R14-15    0.0219 0.000711 0.000759 
R1LATERAL    0.0029 0.000012 0.000015 
R3-4 R12-13    0.0219 0.000711 0.000759 
R5-7 R9-11    0.0206 0.000657 0.000734 

R8    0.0191 0.000616 0.000645 
STDSEC1    0.0208 0. 0.002357 

STDSEC10    0.0191 0. 0.000644 
STDSEC11    0.0206 0. 0.000735 
STDSEC12    0.0219 0. 0.00076 
STDSEC13    0.0219 0. 0.00076 
STDSEC14    0.0219 0. 0.00076 
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Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

STDSEC15    0.0054 0. 0.000027 
STDSEC16    0.0054 0. 0.000027 
STDSEC17    0.0045 0. 0.00004 
STDSEC18    0.0045 0. 0.00004 
STDSEC19    5.208E-04 0. 1.891E-06 
STDSEC2    0.0208 0. 0.002357 
STDSEC3    0.0176 0. 0.001774 
STDSEC4    0.0208 0. 0.002357 
STDSEC5    0.0208 0. 0.002357 
STDSEC6    0.0219 0. 0.00076 
STDSEC7    0.0219 0. 0.00076 
STDSEC8    0.0219 0. 0.00076 
STDSEC9    0.0206 0. 0.000735 

TGDRT1-T3 T13-
T15 

   0.0208 9.917E-07 0.002421 

TGDRT4-6 T10-12    0.0208 9.917E-07 0.002421 
TGDRT7-9    0.0176 4.193E-07 0.001771 

ULATERALS    0.0029 0.000012 0.000015 
W30X108 0.00378 0.07274 0.00528 0.0015 1.161E-08 0.00001 

 
 
Table:  Frame Section Properties 01 - General, Part 3 of 8 

Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

Cable 2.174E-08 0. 4.822E-05 4.822E-05 3.349E-07 3.349E-07 
FLBMS 8.788E-06 0. 0.0048 0.004 0.002795 0.000119 

LLATERALS 1.574E-06 0. 4.847E-04 0.0014 0.000077 0.000029 
P4Beam 0.10884 0. 0.7875 0.7875 0.126598 0.185159 
P4Col 0.037068 0. 0.5558 0.5558 0.090779 0.090779 

Pier5Beam 0.10884 0. 0.7875 0.7875 0.126598 0.185159 
Pier5Col 0.037068 0. 0.5558 0.5558 0.090779 0.090779 

R1-2 R14-15 0.000317 0. 0.0131 0.0096 0.003051 0.00213 
R1LATERAL 6.007E-06 0. 0.0021 6.828E-04 0.000142 0.00011 
R3-4 R12-13 0.000317 0. 0.0131 0.0096 0.003051 0.00213 
R5-7 R9-11 0.000288 0. 0.0119 0.0095 0.002951 0.001954 

R8 0.000279 0. 0.0117 0.008 0.002619 0.001893 
STDSEC1 0. 0. 0. 0. 0. 0. 

STDSEC10 0. 0. 0. 0. 0. 0. 
STDSEC11 0. 0. 0. 0. 0. 0. 
STDSEC12 0. 0. 0. 0. 0. 0. 
STDSEC13 0. 0. 0. 0. 0. 0. 
STDSEC14 0. 0. 0. 0. 0. 0. 
STDSEC15 0. 0. 0. 0. 0. 0. 
STDSEC16 0. 0. 0. 0. 0. 0. 
STDSEC17 0. 0. 0. 0. 0. 0. 
STDSEC18 0. 0. 0. 0. 0. 0. 
STDSEC19 0. 0. 0. 0. 0. 0. 
STDSEC2 0. 0. 0. 0. 0. 0. 
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Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

STDSEC3 0. 0. 0. 0. 0. 0. 
STDSEC4 0. 0. 0. 0. 0. 0. 
STDSEC5 0. 0. 0. 0. 0. 0. 
STDSEC6 0. 0. 0. 0. 0. 0. 
STDSEC7 0. 0. 0. 0. 0. 0. 
STDSEC8 0. 0. 0. 0. 0. 0. 
STDSEC9 0. 0. 0. 0. 0. 0. 

TGDRT1-T3 T13-
T15 

0.00031 0. 0.0119 0.0097 0.005483 0.002062 

TGDRT4-6 T10-12 0.00031 0. 0.0119 0.0097 0.005483 0.002062 
TGDRT7-9 0.000288 0. 0.0113 0.0065 0.004139 0.001918 

ULATERALS 6.007E-06 0. 0.0021 6.828E-04 0.000142 0.00011 
W30X108 3.395E-07 0. 7.840E-04 6.399E-04 0.0001 9.336E-06 

 
 
Table:  Frame Section Properties 01 - General, Part 4 of 8 

Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

Cable 3.349E-07 3.349E-07 0.00694 0.00694 0. No 
FLBMS 0.003197 0.000184 0.36841 0.03051  No 

LLATERALS 0.000086 0.000044 0.04399 0.02776  No 
P4Beam 0.189896 0.277739 0.23204 0.33938  Yes 
P4Col 0.136168 0.136168 0.23575 0.23575  Yes 

Pier5Beam 0.189896 0.277739 0.23204 0.33938  Yes 
Pier5Col 0.136168 0.136168 0.23575 0.23575  Yes 

R1-2 R14-15 0.003682 0.002451 0.18623 0.12043  No 
R1LATERAL 0.000182 0.000127 0.07102 0.04551  No 
R3-4 R12-13 0.003682 0.002451 0.18623 0.12043  No 
R5-7 R9-11 0.003525 0.002255 0.18894 0.11842  No 

R8 0.003163 0.002156 0.1837 0.12096  No 
STDSEC1 0. 0. 0.33676 0. 0. No 

STDSEC10 0. 0. 0.18365 0. 0. No 
STDSEC11 0. 0. 0.18895 0. 0. No 
STDSEC12 0. 0. 0.1863 0. 0. No 
STDSEC13 0. 0. 0.1863 0. 0. No 
STDSEC14 0. 0. 0.1863 0. 0. No 
STDSEC15 0. 0. 0.07103 0. 0. No 
STDSEC16 0. 0. 0.07103 0. 0. No 
STDSEC17 0. 0. 0.0947 0. 0. No 
STDSEC18 0. 0. 0.0947 0. 0. No 
STDSEC19 0. 0. 0.06025 0. 0. No 
STDSEC2 0. 0. 0.33676 0. 0. No 
STDSEC3 0. 0. 0.31716 0. 0. No 
STDSEC4 0. 0. 0.33676 0. 0. No 
STDSEC5 0. 0. 0.33676 0. 0. No 
STDSEC6 0. 0. 0.1863 0. 0. No 
STDSEC7 0. 0. 0.1863 0. 0. No 
STDSEC8 0. 0. 0.1863 0. 0. No 
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Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

STDSEC9 0. 0. 0.18895 0. 0. No 
TGDRT1-T3 T13-

T15 
0.006438 0.002345 0.34141 0.12217  No 

TGDRT4-6 T10-12 0.006438 0.002345 0.34141 0.12217  No 
TGDRT7-9 0.005005 0.002119 0.31701 0.12793  No 

ULATERALS 0.000182 0.000127 0.07102 0.04551  No 
W30X108 0.000116 0.000015 0.08246 0.0149  No 

 
 
Table:  Frame Section Properties 01 - General, Part 5 of 8 

Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

Cable No Cyan 96.385 35.95 No 1. 
FLBMS No White 1029.448 383.95 No 1. 

LLATERALS No White 285.956 106.65 No 1. 
P4Beam No Gray8Dark 1854.997 691.86 No 1. 
P4Col No Green 1757.783 655.6 No 1. 

Pier5Beam No Magenta 1854.997 691.86 No 1. 
Pier5Col No Gray8Dark 1754.872 654.52 No 1. 

R1-2 R14-15 No White 775.511 289.24 No 1. 
R1LATERAL No White 37.195 13.87 No 1. 
R3-4 R12-13 No White 519.074 193.6 No 1. 
R5-7 R9-11 No White 574.544 214.29 No 1. 

R8 No White 154.893 57.77 No 1. 
STDSEC1 No Cyan 27.606 10.3 No 1. 

STDSEC10 No Magenta 0. 0. No 1. 
STDSEC11 No Yellow 0. 0. No 1. 
STDSEC12 No Gray8Dark 0. 0. No 1. 
STDSEC13 No Blue 0. 0. No 1. 
STDSEC14 No Green 0. 0. No 1. 
STDSEC15 No Cyan 0. 0. No 1. 
STDSEC16 No Red 0. 0. No 1. 
STDSEC17 No Magenta 0. 0. No 1. 
STDSEC18 No Yellow 0. 0. No 1. 
STDSEC19 No Gray8Dark 0. 0. No 1. 
STDSEC2 No Red 0. 0. No 1. 
STDSEC3 No Magenta 0. 0. No 1. 
STDSEC4 No Yellow 0. 0. No 1. 
STDSEC5 No Gray8Dark 20.404 7.61 No 1. 
STDSEC6 No Blue 7.905 2.95 No 1. 
STDSEC7 No Green 0. 0. No 1. 
STDSEC8 No Cyan 0. 0. No 1. 
STDSEC9 No Red 0. 0. No 1. 

TGDRT1-T3 T13-
T15 

No White 657.549 245.25 No 1. 

TGDRT4-6 T10-12 No White 818.63 305.33 No 1. 
TGDRT7-9 No White 240.673 89.76 No 1. 

ULATERALS No White 594.731 221.82 No 1. 
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Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

W30X108 No Green 590.479 220.23 Yes 1. 

Table:  Frame Section Properties 01 - General, Part 6 of 8 

Table:  Frame Section Properties 01 - General, Part 6 of 8 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

Cable 1. 1. 1. 1. 1. 1. 
FLBMS 1. 1. 1. 1. 1. 1. 

LLATERALS 1. 1. 1. 1. 1. 1. 
P4Beam 1. 1. 1. 1. 1. 1. 
P4Col 1. 1. 1. 1. 1. 1. 

Pier5Beam 1. 1. 1. 1. 1. 1. 
Pier5Col 1. 1. 1. 1. 1. 1. 

R1-2 R14-15 1. 1. 1. 1. 1. 1. 
R1LATERAL 1. 1. 1. 1. 1. 1. 
R3-4 R12-13 1. 1. 1. 1. 1. 1. 
R5-7 R9-11 1. 1. 1. 1. 1. 1. 

R8 1. 1. 1. 1. 1. 1. 
STDSEC1 1. 1. 1. 1. 1. 1. 

STDSEC10 1. 1. 1. 1. 1. 1. 
STDSEC11 1. 1. 1. 1. 1. 1. 
STDSEC12 1. 1. 1. 1. 1. 1. 
STDSEC13 1. 1. 1. 1. 1. 1. 
STDSEC14 1. 1. 1. 1. 1. 1. 
STDSEC15 1. 1. 1. 1. 1. 1. 
STDSEC16 1. 1. 1. 1. 1. 1. 
STDSEC17 1. 1. 1. 1. 1. 1. 
STDSEC18 1. 1. 1. 1. 1. 1. 
STDSEC19 1. 1. 1. 1. 1. 1. 
STDSEC2 1. 1. 1. 1. 1. 1. 
STDSEC3 1. 1. 1. 1. 1. 1. 
STDSEC4 1. 1. 1. 1. 1. 1. 
STDSEC5 1. 1. 1. 1. 1. 1. 
STDSEC6 1. 1. 1. 1. 1. 1. 
STDSEC7 1. 1. 1. 1. 1. 1. 
STDSEC8 1. 1. 1. 1. 1. 1. 
STDSEC9 1. 1. 1. 1. 1. 1. 

TGDRT1-T3 T13-
T15 

1. 1. 1. 1. 1. 1. 

TGDRT4-6 T10-12 1. 1. 1. 1. 1. 1. 
TGDRT7-9 1. 1. 1. 1. 1. 1. 

ULATERALS 1. 1. 1. 1. 1. 1. 
W30X108 1. 1. 1. 1. 1. 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 7 of 8 

Table:  Frame Section Properties 01 - General, Part 7 of 8 

SectionName WMod SectInFile FileName GUID 
     

Cable 1.    
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Table:  Frame Section Properties 01 - General, Part 7 of 8 

SectionName WMod SectInFile FileName GUID 
     

FLBMS 1.    
LLATERALS 1.    

P4Beam 1.    
P4Col 1.    

Pier5Beam 1.    
Pier5Col 1.    

R1-2 R14-15 1.    
R1LATERAL 1.    
R3-4 R12-13 1.    
R5-7 R9-11 1.    

R8 1.    
STDSEC1 1.    

STDSEC10 1.    
STDSEC11 1.    
STDSEC12 1.    
STDSEC13 1.    
STDSEC14 1.    
STDSEC15 1.    
STDSEC16 1.    
STDSEC17 1.    
STDSEC18 1.    
STDSEC19 1.    
STDSEC2 1.    
STDSEC3 1.    
STDSEC4 1.    
STDSEC5 1.    
STDSEC6 1.    
STDSEC7 1.    
STDSEC8 1.    
STDSEC9 1.    

TGDRT1-T3 T13-
T15 

1.    

TGDRT4-6 T10-12 1.    
TGDRT7-9 1.    

ULATERALS 1.    
W30X108 1. W30X108 c:\program files\computers and 

structures\sap2000 18\sections.pro 
 

 
 
Table:  Frame Section Properties 01 - General, Part 8 of 8 

Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

Cable Added 5/30/2016 10:27:21 AM 
FLBMS Added 1/6/2014 5:03:09 PM 

LLATERALS Added 1/6/2014 4:44:00 PM 
P4Beam Added 3/5/2016 8:05:10 PM 
P4Col Added 3/5/2016 8:10:25 PM 

Pier5Beam Added 3/5/2016 8:23:10 PM 
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Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

Pier5Col Added 3/5/2016 8:23:33 PM 
R1-2 R14-15 Added 1/5/2014 9:01:13 PM 
R1LATERAL Added 1/13/2014 11:02:26 PM 
R3-4 R12-13 Added 1/5/2014 9:09:56 PM 
R5-7 R9-11 Added 1/5/2014 9:13:37 PM 

R8 Added 1/5/2014 9:18:02 PM 
STDSEC1 Added 12/30/2013 8:15:26 PM 

STDSEC10 Added 12/30/2013 8:15:26 PM 
STDSEC11 Added 12/30/2013 8:15:26 PM 
STDSEC12 Added 12/30/2013 8:15:26 PM 
STDSEC13 Added 12/30/2013 8:15:26 PM 
STDSEC14 Added 12/30/2013 8:15:26 PM 
STDSEC15 Added 12/30/2013 8:15:26 PM 
STDSEC16 Added 12/30/2013 8:15:26 PM 
STDSEC17 Added 12/30/2013 8:15:26 PM 
STDSEC18 Added 12/30/2013 8:15:26 PM 
STDSEC19 Added 12/30/2013 8:15:26 PM 
STDSEC2 Added 12/30/2013 8:15:26 PM 
STDSEC3 Added 12/30/2013 8:15:26 PM 
STDSEC4 Added 12/30/2013 8:15:26 PM 
STDSEC5 Added 12/30/2013 8:15:26 PM 
STDSEC6 Added 12/30/2013 8:15:26 PM 
STDSEC7 Added 12/30/2013 8:15:26 PM 
STDSEC8 Added 12/30/2013 8:15:26 PM 
STDSEC9 Added 12/30/2013 8:15:26 PM 

TGDRT1-T3 T13-
T15 

Added 1/5/2014 1:51:50 PM 

TGDRT4-6 T10-12 Added 1/5/2014 8:34:10 PM 
TGDRT7-9 Added 1/5/2014 8:43:17 PM 

ULATERALS Added 1/12/2014 9:20:26 PM 
W30X108 Imported 3/10/2016 2:49:32 PM 

from SECTIONS.PRO 

 
 
Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 1 of 2 

SectionNam
e 

RebarMatL RebarMatC ReinfConfig LatRein
f 

Cover NumBars3D
ir 

NumBars2D
ir 

     ft   

P4Beam A615Gr60 A615Gr60 Rectangular Ties 0.01042 3 3 
P4Col A615Gr60 A615Gr60 Rectangular Ties 0.01042 3 3 

Pier5Beam A615Gr60 A615Gr60 Rectangular Ties 0.01042 3 3 
Pier5Col A615Gr60 A615Gr60 Rectangular Ties 0.01042 3 3 
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Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

Table:  Frame Section Properties 02 - Concrete Column, Part 2 of 2 

SectionNam
e 

BarSizeL BarSizeC SpacingC NumCBars2 NumCBars3 ReinfType 

   ft    

P4Beam #9 #4 0.04167 3 3 Design 
P4Col #9 #4 0.04167 3 3 Design 

Pier5Beam #9 #4 0.04167 3 3 Design 
Pier5Col #9 #4 0.04167 3 3 Design 

 
 
Table:  Link Property Definitions 01 - General, Part 1 of 3 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Link LinkType Mass Weight RotInert1 RotInert2 RotInert3 
  Kip-s2/ft Kip Kip-ft-s2 Kip-ft-s2 Kip-ft-s2 

Pier4F Linear 0. 0. 0. 0. 0. 
Pier5E Linear 0. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 2 of 3 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Link DefLength DefArea PDM2I PDM2J PDM3I PDM3J 
 ft ft2     

Pier4F 0.08333 0.0069 0. 0. 0. 0. 
Pier5E 0.08333 0.0069 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 3 of 3 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Link Color GUID Notes 
    

Pier4F Cyan 30d405fd-730f-41e3-
bbea-244cda3e9650 

Added 3/5/2016 8:18:58 PM 

Pier5E Cyan a2bde322-04e3-446c-
ba4c-3fb7596045e1 

Added 3/5/2016 8:18:58 PM 

 
 
Table:  Link Property Definitions 02 - Linear 

Table:  Link Property Definitions 02 - Linear 

Link DOF Fixed TransKE RotKE TransCE RotCE DJ 
   Kip/ft Kip-ft/rad Kip-s/ft Kip-ft-s/rad ft 

Pier4F U1 No 1200000.  0.   
Pier4F U2 No 1200000.  0.  0. 
Pier4F U3 No 1200000.  0.  0. 
Pier4F R1 No  0.  0.  
Pier4F R2 No  0.  0.  
Pier4F R3 No  0.  0.  
Pier5E U1 No 1200000.  0.   
Pier5E U2 No 1200.  0.  0. 
Pier5E U3 No 1200000.  0.  0. 
Pier5E R1 No  0.  0.  
Pier5E R2 No  0.  0.  
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Table:  Link Property Definitions 02 - Linear 

Link DOF Fixed TransKE RotKE TransCE RotCE DJ 
   Kip/ft Kip-ft/rad Kip-s/ft Kip-ft-s/rad ft 

Pier5E R3 No  0.  0.  

 
 
Table:  Area Section Properties, Part 1 of 4 

Table:  Area Section Properties, Part 1 of 4 

Section Material MatAngle AreaType Type DrillDOF Thickness BendThick 
  Degrees    ft ft 

CONCDEC
K 

4000Psi 0. Shell Shell-Thin Yes 0.06015 0.06015 

P4Shaft 4000Psi 0. Shell Shell-Thick Yes 0.94583 0.94583 
Pier5Shaft 4000Psi 0. Shell Shell-Thick Yes 1.01 1.01 

 
 
Table:  Area Section Properties, Part 2 of 4 

Table:  Area Section Properties, Part 2 of 4 

Section Arc InComp CoordSys Color TotalWt TotalMass 
 Degrees    Kip Kip-s2/ft 

CONCDEC
K 

   Red 6047.367 1961.3 

P4Shaft    Green 2726.724 1016.99 
Pier5Shaft    Green 7775.441 2900.02 

 
 
Table:  Area Section Properties, Part 3 of 4 

Table:  Area Section Properties, Part 3 of 4 

Section F11Mod F22Mod F12Mod M11Mod M22Mod M12Mod V13Mod 
        

CONCDEC
K 

1. 1. 1. 1. 1. 1. 1. 

P4Shaft 1. 1. 1. 1. 1. 1. 1. 
Pier5Shaft 1. 1. 1. 1. 1. 1. 1. 

 
 
Table:  Area Section Properties, Part 4 of 4 

Table:  Area Section Properties, Part 4 of 4 

Section V23Mod MMod WMod GUID Notes 
      

CONCDEC
K 

1. 1. 1.15 758d35c5-1090-4412-
961e-a55c3a7a8dcf 

Added 3/13/2016 4:57:39 PM 

P4Shaft 1. 1. 1. e23ce15c-c909-437f-
a64a-f4b7fa56ca94 

Added 3/5/2016 8:14:07 PM 

Pier5Shaft 1. 1. 1. 53f15048-2c5b-4fcb-
a24a-21a06b537a20 

Added 3/5/2016 8:30:26 PM 

 
 
Table:  Section Designer Properties 01 - General, Part 1 of 5 

Table:  Section Designer Properties 01 - General, Part 1 of 5 

SectionName DesignType DsgnOrChck BaseMat IncludeVStr nTotalShp 
      

R1-2 R14-15 No Check/Design Check A572Gr50 No 4 
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Table:  Section Designer Properties 01 - General, Part 1 of 5 

SectionName DesignType DsgnOrChck BaseMat IncludeVStr nTotalShp 
      

R1LATERAL No Check/Design Check A572Gr50 No 4 
R3-4 R12-13 No Check/Design Check A572Gr50 No 4 
R5-7 R9-11 No Check/Design Check A572Gr50 No 4 

R8 No Check/Design Check A572Gr50 No 4 
TGDRT1-T3 T13-

T15 
No Check/Design Check A572Gr50 No 4 

TGDRT4-6 T10-12 No Check/Design Check A572Gr50 No 4 
TGDRT7-9 No Check/Design Check A572Gr50 No 4 

ULATERALS No Check/Design Check A572Gr50 No 4 

 
 
Table:  Section Designer Properties 01 - General, Part 2 of 5 

Table:  Section Designer Properties 01 - General, Part 2 of 5 

SectionName nIWideFlng nChannel nTee nAngle nDblAngle nBoxTube 
       

R1-2 R14-15 0 0 0 0 0 0 
R1LATERAL 0 0 0 0 0 0 
R3-4 R12-13 0 0 0 0 0 0 
R5-7 R9-11 0 0 0 0 0 0 

R8 0 0 0 0 0 0 
TGDRT1-T3 T13-

T15 
0 0 0 0 0 0 

TGDRT4-6 T10-12 0 0 0 0 0 0 
TGDRT7-9 0 0 0 0 0 0 

ULATERALS 0 0 0 0 0 0 

 
 
Table:  Section Designer Properties 01 - General, Part 3 of 5 

Table:  Section Designer Properties 01 - General, Part 3 of 5 

SectionName nPipe nPlate nSolidRect nSolidCirc nSolidSeg nSolidSect 
       

R1-2 R14-15 0 0 4 0 0 0 
R1LATERAL 0 0 4 0 0 0 
R3-4 R12-13 0 0 4 0 0 0 
R5-7 R9-11 0 0 4 0 0 0 

R8 0 0 4 0 0 0 
TGDRT1-T3 T13-

T15 
0 0 4 0 0 0 

TGDRT4-6 T10-12 0 0 4 0 0 0 
TGDRT7-9 0 0 4 0 0 0 

ULATERALS 0 0 4 0 0 0 

 
 
Table:  Section Designer Properties 01 - General, Part 4 of 5 

Table:  Section Designer Properties 01 - General, Part 4 of 5 

SectionName nPolygon nReinfSing nReinfLine nReinfRect nReinfCirc nRefLine 
       

R1-2 R14-15 0 0 0 0 0 0 
R1LATERAL 0 0 0 0 0 0 
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Table:  Section Designer Properties 01 - General, Part 4 of 5 

SectionName nPolygon nReinfSing nReinfLine nReinfRect nReinfCirc nRefLine 
       

R3-4 R12-13 0 0 0 0 0 0 
R5-7 R9-11 0 0 0 0 0 0 

R8 0 0 0 0 0 0 
TGDRT1-T3 T13-

T15 
0 0 0 0 0 0 

TGDRT4-6 T10-12 0 0 0 0 0 0 
TGDRT7-9 0 0 0 0 0 0 

ULATERALS 0 0 0 0 0 0 

 
 
Table:  Section Designer Properties 01 - General, Part 5 of 5 

Table:  Section Designer Properties 01 - General, Part 5 of 5 

SectionName nRefCirc nCaltransSq nCaltransCr nCaltransHx nCaltransOc 
      

R1-2 R14-15 0 0 0 0 0 
R1LATERAL 0 0 0 0 0 
R3-4 R12-13 0 0 0 0 0 
R5-7 R9-11 0 0 0 0 0 

R8 0 0 0 0 0 
TGDRT1-T3 T13-

T15 
0 0 0 0 0 

TGDRT4-6 T10-12 0 0 0 0 0 
TGDRT7-9 0 0 0 0 0 

ULATERALS 0 0 0 0 0 

 
 
Section 2  Page Avenue Bridge Load Cases 

Table:  Load Case Definitions, Part 1 of 3 

Table:  Load Case Definitions, Part 1 of 3 

Case Type InitialCond ModalCase BaseCase MassSource DesTypeOpt 
       

DEAD NonStatic Zero    Prog Det 
MODAL LinModal DEAD    Prog Det 

LIVELOAD LinMoving DEAD    Prog Det 

 
 
Table:  Load Case Definitions, Part 2 of 3 

Table:  Load Case Definitions, Part 2 of 3 

Case DesignType DesActOpt DesignAct AutoType RunCase CaseStatus 
       

DEAD DEAD Prog Det Non-
Composite 

None Yes Finished 

MODAL OTHER Prog Det Other None Yes Finished 
LIVELOAD VEHICLE 

LIVE 
Prog Det Short-Term 

Composite 
None Yes Finished 
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Table:  Load Case Definitions, Part 3 of 3 

Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

DEAD   
MODAL   

LIVELOAD   

 
Table:  Case - Static 1 - Load Assignments 

Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 
    

DEAD Load pattern DEAD 1. 

 
 
Table:  Case - Static 2 - Nonlinear Load Application 

Table:  Case - Static 2 - Nonlinear Load Application 

Case LoadApp MonitorDOF MonitorJt 
    

DEAD Full Load U1 59 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Case Unloading GeoNonLin ResultsSave MaxTotal MaxNull 
      

DEAD Unload Entire None Final State 200 50 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Case MaxIterCS MaxIterNR ItConvTol UseEvStep EvLumpTol LSPerIter 
       

DEAD 10 40 1.0000E-04 Yes 0.01 20 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Case LSTol LSStepFact StageSave StageMinIns StageMinTD 
      

DEAD 0.1 1.618    

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Case FrameTC FrameHinge CableTC LinkTC LinkOther TimeDepMa
t 

       

DEAD Yes Yes Yes Yes Yes  
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Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TFMaxIter TFTol TFAccelFact TFNoStop 
     

DEAD 10 0.01 1. No 

 
 
Table:  Case - Moving Load 1 - Lane Assignments 

Table:  Case - Moving Load 1 - Lane Assignments 

Case AssignNum VehClass ScaleFa
ctor 

MinLoaded MaxLoaded NumLanes 

       

LIVELOAD 1 HL93_ALL 1. 1 7 7 

 
 
Table:  Case - Moving Load 2 - Lanes Loaded 

Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 
   

LIVELOAD 1 CTRLANE2 
LIVELOAD 1 LTLANE21 
LIVELOAD 1 LTLANE22 
LIVELOAD 1 LTLANE23 
LIVELOAD 1 RTLANE21 
LIVELOAD 1 RTLANE22 
LIVELOAD 1 RTLANE23 

 
 
Table:  Case - Moving Load 3 - MultiLane Factors 

Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 1 1.2 
LIVELOAD 2 1. 
LIVELOAD 3 0.85 
LIVELOAD 4 0.65 
LIVELOAD 5 0.65 
LIVELOAD 6 0.65 
LIVELOAD 7 0.65 
LIVELOAD 8 0.65 
LIVELOAD 9 0.65 
LIVELOAD 10 0.65 
LIVELOAD 11 0.65 
LIVELOAD 12 0.65 
LIVELOAD 13 0.65 
LIVELOAD 14 0.75 
LIVELOAD 15 0.75 
LIVELOAD 16 0.75 
LIVELOAD 17 0.75 
LIVELOAD 18 0.75 
LIVELOAD 19 0.75 
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Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 20 0.75 
LIVELOAD 21 0.75 
LIVELOAD 22 0.75 
LIVELOAD 23 0.75 
LIVELOAD 24 0.75 
LIVELOAD 25 0.75 
LIVELOAD 26 0.75 
LIVELOAD 27 0.75 
LIVELOAD 28 0.75 
LIVELOAD 29 0.75 
LIVELOAD 30 0.75 
LIVELOAD 31 0.75 
LIVELOAD 32 0.75 
LIVELOAD 33 0.75 
LIVELOAD 34 0.75 

 
 
Table:  Case - Modal 1 - General, Part 1 of 2 

Table:  Case - Modal 1 - General, Part 1 of 2 

Case ModeType MaxNumMo
des 

MinNumMo
des 

EigenShift EigenCutoff EigenTol 

    Cyc/sec Cyc/sec  

MODAL Eigen 30 1 0.0000E+00 0.0000E+00 1.0000E-09 

 
 
Table:  Case - Modal 1 - General, Part 2 of 2 

Table:  Case - Modal 1 - General, 
Part 2 of 2 

Case AutoShift 
  

MODAL Yes 

 
 
Section 3  Page Avenue Bridge Modal Analysis Output 

Table:  Modal Load Participation Ratios 

Table:  Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 
   Percent Percent 

MODAL Acceleration UX 99.8425 92.3113 
MODAL Acceleration UY 99.9012 73.4875 
MODAL Acceleration UZ 98.2203 44.9992 

 
 



www.manaraa.com

308 
 

Table:  Modal Participating Mass Ratios, Part 1 of 3 

Table:  Modal Participating Mass Ratios, Part 1 of 3 

OutputCase StepType StepNu
m 

Period UX UY UZ SumUX 

   Sec     

MODAL   0. 0. 7.161E-06 6.611E-13 0. 

 
 
Table:  Modal Participating Mass Ratios, Part 2 of 3 

Table:  Modal Participating Mass Ratios, Part 2 of 3 

OutputCase StepTyp
e 

StepNum SumUY SumUZ RX RY RZ 

        

MODAL   7.161E-06 6.611E-13 3.712E-05 2.092E-11 0.00024 

 
 
Table:  Modal Participating Mass Ratios, Part 3 of 3 

Table:  Modal Participating Mass Ratios, Part 3 of 3 

OutputCase StepType StepNum SumRX SumRY SumRZ 
      

MODAL   3.712E-05 2.092E-11 0.00024 

 
 
Table:  Modal Participation Factors, Part 1 of 2 

Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepTyp
e 

StepNum Period UX UY UZ RX 

   Sec Kip-ft Kip-ft Kip-ft Kip-ft 

MODAL   0. 0. -0.00017 6.981E-09 0.000335 

 
 
Table:  Modal Participation Factors, Part 2 of 2 

Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-ft Kip-ft Kip-ft-s2 Kip-ft 

MODAL   0.000143 2.634423 0. 0. 

 
 
Table:  Modal Periods And Frequencies 

Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 
   Sec Cyc/sec rad/sec rad2/sec2 

MODAL   0. 0.0000E+00 0.0000E+00 0.0000E+00 
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APPENDIX D 

D.  ANALYSIS OUTPUT FOR TENNESSEE RIVER BRIDGE 
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Section 1  US 24 Bridge Analysis Input 

Table:  Material Properties 01 - General, Part 1 of 2 

Table:  Material Properties 01 - General, Part 1 of 2 

Material Type SymType TempDepen
d 

Color GUID 

      

4000Psi Concrete Isotropic No Red  
A36 Steel Isotropic No Blue  

A416Gr270 Tendon Uniaxial No Cyan  
A514 Steel Isotropic No Cyan  
A588 Steel Isotropic No Cyan  

A615Gr60 Rebar Uniaxial No Green  
A992Fy50 Steel Isotropic No Cyan  

ASTM 
A586G 

Other Isotropic No Gray8Dark  

Substr Concrete Isotropic No Red  

 
 
Table:  Material Properties 01 - General, Part 2 of 2 

Table:  Material Properties 01 - General, Part 2 of 2 

Material Notes 
  

4000Psi Customary f'c 4000 psi 9/27/2014 
9:39:17 PM 

A36 United States ASTM A36 Grade 36 
added 9/28/2014 6:52:31 PM 

A416Gr270 ASTM A416 Grade 270 2/7/2016 
6:46:12 PM 

A514 ASTM A992 Grade 50 9/27/2014 
9:39:17 PM 

A588 ASTM A992 Grade 50 9/27/2014 
9:39:17 PM 

A615Gr60 ASTM A615 Grade 60 2/7/2016 
6:46:12 PM 

A992Fy50 ASTM A992 Grade 50 9/27/2014 
9:39:17 PM 

ASTM 
A586G 

MAT added 2/7/2016 10:55:03 PM 

Substr Customary f'c 4000 psi 9/27/2014 
9:39:17 PM 

 
 
Table:  Material Properties 02 - Basic Mechanical Properties 

Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

4000Psi 1.5000E-01 4.6621E-03 155740. 64891.67 0.2 5.5000E-06 
A36 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

A416Gr270 4.9000E-01 1.5230E-02 4104000.   6.5000E-06 
A514 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
A588 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

A615Gr60 4.9000E-01 1.5230E-02 4176000.   6.5000E-06 
A992Fy50 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
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Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

ASTM 
A586G 

4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

Substr 1.5000E-01 4.6621E-03 155740. 64891.67 0.2 5.5000E-06 

 
 
Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Material Fy Fu EffFy EffFu SSCurveOpt SSHysTyp
e 

SHard 

 Kip/ft2 Kip/ft2 Kip/ft2 Kip/ft2    

A36 5184. 8352. 7776. 9187.2 Simple Kinematic 0.02 
A514 14400. 17280. 14400. 17280. Simple Kinematic 0.015 
A588 7200. 10080. 7920. 10296. Simple Kinematic 0.015 

A992Fy50 7200. 9360. 7920. 10296. Simple Kinematic 0.015 

 
 
Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Material SMax SRup FinalSlope 
    

A36 0.14 0.2 -0.1 
A514 0.11 0.17 -0.1 
A588 0.11 0.17 -0.1 

A992Fy50 0.11 0.17 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Material Fc LtWtConc SSCurveOpt SSHysType SFc SCap FinalSlo
pe 

 Kip/ft2       

4000Psi 576. No Mander Takeda 0.002219 0.005 -0.1 
Substr 576. No Mander Takeda 0.002219 0.005 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Table:  Material Properties 03b - Concrete 
Data, Part 2 of 2 

Material FAngle DAngle 
 Degrees Degrees 

4000Psi 0. 0. 
Substr 0. 0. 

 
 
Table:  Frame Section Properties 01 - General, Part 1 of 8 

Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

ARL0R1 A992Fy50 SD Section    



www.manaraa.com

313 
 

Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

ARR1R3 A992Fy50 SD Section    
ARR3R4 A992Fy50 SD Section    
ARR4R7 A992Fy50 SD Section    

Cable ASTM A586G General 1. 1.  
DIAR1 A992Fy50 I/Wide Flange 3. 1.25 0.0729 

DIAR2R7 A992Fy50 I/Wide Flange 2.9729 1.25 0.0625 
FLBM37 A36 I/Wide Flange 6.0625 1.3333 0.1146 
FLBM5 A36 I/Wide Flange 6.0938 1.3333 0.1302 

FLBMT0 A36 I/Wide Flange 5.9792 1.3333 0.0729 
FLBMT1246 A36 I/Wide Flange 6.1458 1.3333 0.1563 

FSEC1 A992Fy50 I/Wide Flange 1. 0.41667 0.03167 
HP14X102 A36 I/Wide Flange 1.16667 1.23333 0.05875 
HP14X73 A36 I/Wide Flange 1.13333 1.21667 0.04208 
HP14X89 A36 I/Wide Flange 1.15 1.225 0.05125 

Portal Brace A992Fy50 I/Wide Flange 2.2917 1.25 0.0625 
STRUTR2R7 A992Fy50 I/Wide Flange 2.9729 1.25 0.0625 

TGL0L2 A992Fy50 SD Section    
TGL2L6 A992Fy50 SD Section    
TGL6L8 A992Fy50 SD Section    

W30X116 A36 I/Wide Flange 2.5 0.875 0.0708 
W30X99 A36 I/Wide Flange 2.475 0.875 0.0558 

 
 
Table:  Frame Section Properties 01 - General, Part 2 of 8 

Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

ARL0R1    1.3718 1.889054 1.96309 
ARR1R3    1.3001 1.837566 1.893222 
ARR3R4    1.229 1.781335 1.824012 
ARR4R7    1.1579 1.720006 1.754793 

Cable    0.0442 0.000311 0.000156 
DIAR1 0.0729 1.25 0.0729 0.3903 0.000674 0.53171 

DIAR2R7 0.0625 1.25 0.0625 0.3342 0.000426 0.451229 
FLBM37 0.0365 1.3333 0.1146 0.5185 0.00136 3.306855 
FLBM5 0.0365 1.3333 0.1302 0.5601 0.001935 3.691192 

FLBMT0 0.0365 1.3333 0.0729 0.4073 0.000427 2.299202 
FLBMT1246 0.0365 1.3333 0.1563 0.6297 0.003238 4.342553 

FSEC1 0.02083 0.41667 0.03167 0.0459 0.000011 0.007615 
HP14X102 0.05875 1.23333 0.05875 0.2083 0.00026 0.050637 
HP14X73 0.04208 1.21667 0.04208 0.1486 0.000097 0.035156 
HP14X89 0.05125 1.225 0.05125 0.1813 0.000173 0.043596 

Portal Brace 0.0625 1.25 0.0625 0.2917 0.00037 0.247143 
STRUTR2R7 0.0625 1.25 0.0625 0.3342 0.000426 0.451229 

TGL0L2    1.5212 2.985977 21.111538 
TGL2L6    1.5853 3.009519 22.486462 
TGL6L8    1.3929 2.93165 18.380184 

W30X116 0.0471 0.875 0.0708 0.235 0.000278 0.234322 
W30X99 0.0433 0.875 0.0558 0.2 0.00016 0.190534 
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Table:  Frame Section Properties 01 - General, Part 3 of 8 

Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

ARL0R1 1.105147 0. 1.0352 0.3048 1.090229 0.982353 
ARR1R3 1.048333 0. 0.9697 0.3044 1.050469 0.931851 
ARR3R4 0.990627 0. 0.9045 0.3039 1.011048 0.880557 
ARR4R7 0.931581 0. 0.8388 0.3036 0.971582 0.828072 

Cable 0.000156 0. 0.0398 0.0398 1. 1. 
DIAR1 0.023823 0. 0.2187 0.1519 0.354473 0.038116 

DIAR2R7 0.020403 0. 0.1858 0.1302 0.303562 0.032645 
FLBM37 0.045294 0. 0.2213 0.2547 1.090921 0.067943 
FLBM5 0.051457 0. 0.2224 0.2893 1.211458 0.077187 

FLBMT0 0.028821 0. 0.2182 0.162 0.769067 0.043233 
FLBMT1246 0.061767 0. 0.2243 0.3473 1.413177 0.092653 

FSEC1 0.000382 0. 0.0208 0.022 0.01523 0.001836 
HP14X102 0.018326 0. 0.0685 0.1208 0.086806 0.029717 
HP14X73 0.012587 0. 0.0477 0.0853 0.06204 0.020691 
HP14X89 0.015721 0. 0.0589 0.1046 0.075819 0.025668 

Portal Brace 0.020389 0. 0.1432 0.1302 0.215686 0.032623 
STRUTR2R7 0.020403 0. 0.1858 0.1302 0.303562 0.032645 

TGL0L2 1.392646 0. 0.7611 0.5887 4.564657 0.903242 
TGL2L6 1.443454 0. 0.7637 0.6407 4.851029 0.936199 
TGL6L8 1.291031 0. 0.7551 0.4856 3.992047 0.837327 

W30X116 0.007926 0. 0.1178 0.1033 0.187458 0.018116 
W30X99 0.006246 0. 0.1072 0.0814 0.153967 0.014277 

 
 
Table:  Frame Section Properties 01 - General, Part 4 of 8 

Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

ARL0R1 1.442008 1.18804 1.19625 0.89756  No 
ARR1R3 1.380691 1.124189 1.20675 0.89798  No 
ARR3R4 1.319954 1.06015 1.21826 0.8978  No 
ARR4R7 1.259211 0.995372 1.23104 0.89695  No 

Cable 1. 1. 1. 1. 0. No 
DIAR1 0.415201 0.060745 1.16715 0.24705  No 

DIAR2R7 0.354102 0.051609 1.16189 0.24707  No 
FLBM37 1.219316 0.103804 2.5254 0.29556  No 
FLBM5 1.345766 0.11767 2.56712 0.3031  No 

FLBMT0 0.884589 0.06674 2.37588 0.26601  No 
FLBMT1246 1.55867 0.140869 2.62606 0.31319  No 

FSEC1 0.017346 0.00285 0.4073 0.09128  No 
HP14X102 0.097801 0.045602 0.49301 0.29659  No 
HP14X73 0.068287 0.031597 0.48638 0.29103  No 
HP14X89 0.084491 0.039178 0.49044 0.29451  No 

Portal Brace 0.247509 0.050944 0.92051 0.2644  No 
STRUTR2R7 0.354102 0.051609 1.16189 0.24707  No 

TGL0L2 5.205132 1.360108 3.7254 0.95683  No 
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Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

TGL2L6 5.502079 1.409543 3.76623 0.95422  No 
TGL6L8 4.613239 1.261238 3.63259 0.96274  No 

W30X116 0.215982 0.028411 0.9986 0.18365  No 
W30X99 0.178582 0.022469 0.97609 0.17673  No 

 
 
Table:  Frame Section Properties 01 - General, Part 5 of 8 

Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

ARL0R1 No Green 144.721 4.5 No 1. 
ARR1R3 No Red 258.583 8.04 No 1. 
ARR3R4 No Yellow 116.26 3.61 No 1. 
ARR4R7 No Blue 315.891 9.82 No 1. 

Cable No Gray8Dark 35.721 1.11 No 1. 
DIAR1 No Green 37.347 1.16 No 1. 

DIAR2R7 No Yellow 149.857 4.66 No 1. 
FLBM37 No Cyan 40.321 1.25 No 1. 
FLBM5 No Magenta 29.037 0.9 No 1. 

FLBMT0 No White 21.116 0.66 No 1. 
FLBMT1246 No Blue 130.58 4.06 No 1. 

FSEC1 No Cyan 0. 0. No 1. 
HP14X102 No Gray8Dark 18.196 0.57 Yes 1. 
HP14X73 No Red 64.898 2.02 Yes 1. 
HP14X89 No Yellow 15.83 0.49 Yes 1. 

Portal Brace No Magenta 11.864 0.37 No 1. 
STRUTR2R7 No Gray8Dark 82.872 2.58 No 1. 

TGL0L2 No Blue 261.723 8.13 No 1. 
TGL2L6 No Magenta 545.515 16.96 No 1. 
TGL6L8 No Gray8Dark 119.827 3.72 No 1. 

W30X116 No Yellow 338.379 10.52 No 1. 
W30X99 No Red 0. 0. No 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 6 of 8 

Table:  Frame Section Properties 01 - General, Part 6 of 8 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

ARL0R1 1. 1. 1. 1. 1. 1.2 
ARR1R3 1. 1. 1. 1. 1. 1.2 
ARR3R4 1. 1. 1. 1. 1. 1.2 
ARR4R7 1. 1. 1. 1. 1. 1.2 

Cable 1. 1. 1. 1. 1. 1. 
DIAR1 1. 1. 1. 1. 1. 1. 

DIAR2R7 1. 1. 1. 1. 1. 1. 
FLBM37 1. 1. 1. 1. 1. 1.15 
FLBM5 1. 1. 1. 1. 1. 1.15 

FLBMT0 1. 1. 1. 1. 1. 1.15 
FLBMT1246 1. 1. 1. 1. 1. 1.15 
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Table:  Frame Section Properties 01 - General, Part 6 of 8 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

FSEC1 1. 1. 1. 1. 1. 1. 
HP14X102 1. 1. 1. 1. 1. 1. 
HP14X73 1. 1. 1. 1. 1. 1. 
HP14X89 1. 1. 1. 1. 1. 1. 

Portal Brace 1. 1. 1. 1. 1. 1. 
STRUTR2R7 1. 1. 1. 1. 1. 1. 

TGL0L2 1. 1. 1. 1. 1. 1.15 
TGL2L6 1. 1. 1. 1. 1. 1.15 
TGL6L8 1. 1. 1. 1. 1. 1.15 

W30X116 1. 1. 1. 1. 1. 1.1 
W30X99 1. 1. 1. 1. 1. 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 7 of 8 

Table:  Frame Section Properties 01 - General, Part 7 of 8 

SectionName WMod SectInFile FileName GUID 
     

ARL0R1 1.2    
ARR1R3 1.2    
ARR3R4 1.2    
ARR4R7 1.2    

Cable 1.    
DIAR1 1.    

DIAR2R7 1.    
FLBM37 1.15    
FLBM5 1.15    

FLBMT0 1.15    
FLBMT1246 1.15    

FSEC1 1.    
HP14X102 1. HP14X102 C:\Program Files\Computers and 

Structures\SAP2000 18\aisc13.pro 
 

HP14X73 1. HP14X73 C:\Program Files\Computers and 
Structures\SAP2000 18\aisc13.pro 

 

HP14X89 1. HP14X89 C:\Program Files\Computers and 
Structures\SAP2000 18\aisc13.pro 

 

Portal Brace 1.    
STRUTR2R7 1.    

TGL0L2 1.15    
TGL2L6 1.15    
TGL6L8 1.15    

W30X116 1.1    
W30X99 1.    

 
 
Table:  Frame Section Properties 01 - General, Part 8 of 8 

Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

ARL0R1 Added 2/7/2016 7:18:29 PM 
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Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

ARR1R3 Added 2/7/2016 8:23:51 PM 
ARR3R4 Added 2/7/2016 8:29:59 PM 
ARR4R7 Added 2/7/2016 8:32:35 PM 

Cable Added 5/31/2016 9:59:30 PM 
DIAR1 Added 2/7/2016 10:35:01 PM 

DIAR2R7 Added 2/7/2016 10:38:41 PM 
FLBM37 Added 9/28/2014 7:12:14 PM 
FLBM5 Added 9/28/2014 7:13:11 PM 

FLBMT0 Added 9/28/2014 7:07:51 PM 
FLBMT1246 Added 9/28/2014 7:10:48 PM 

FSEC1 Added 9/27/2014 9:39:49 PM 
HP14X102 Imported 9/28/2014 8:17:56 PM 

from AISC13.pro 
HP14X73 Imported 9/28/2014 8:18:59 PM 

from AISC13.pro 
HP14X89 Imported 9/28/2014 8:19:10 PM 

from AISC13.pro 
Portal Brace Added 2/7/2016 10:01:07 PM 

STRUTR2R7 Added 2/7/2016 10:08:13 PM 
TGL0L2 Added 2/7/2016 6:44:03 PM 
TGL2L6 Added 2/7/2016 6:56:25 PM 
TGL6L8 Added 2/7/2016 7:04:47 PM 

W30X116 Added 2/7/2016 5:37:44 PM 
W30X99 Added 2/7/2016 5:34:08 PM 

 
 
Table:  Link Property Definitions 01 - General, Part 1 of 3 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Link LinkType Mass Weight RotInert1 RotInert2 RotInert3 
  Kip-s2/ft Kip Kip-ft-s2 Kip-ft-s2 Kip-ft-s2 

LINK1 Linear 0. 0. 0. 0. 0. 
LINK2 Linear 0. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 2 of 3 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Link DefLength DefArea PDM2I PDM2J PDM3I PDM3J 
 ft ft2     

LINK1 1. 1. 0. 0. 0. 0. 
LINK2 1. 1. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 3 of 3 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Link Color GUID Notes 
    

LINK1 Magenta  Added 2/29/2016 3:34:56 PM 
LINK2 Magenta  Added 2/29/2016 3:34:56 PM 
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Table:  Link Property Definitions 02 - Linear 

Table:  Link Property Definitions 02 - Linear 

Link DOF Fixed TransK
E 

RotKE TransCE RotCE DJ 

   Kip/ft Kip-ft/rad Kip-s/ft Kip-ft-s/rad ft 

LINK1 U1 No 100000.  0.   
LINK1 U2 No 100000.  0.  0. 
LINK1 U3 No 100000.  0.  0. 
LINK1 R1 No  0.  0.  
LINK1 R2 No  0.  0.  
LINK1 R3 No  0.  0.  
LINK2 U1 No 100000.  0.   
LINK2 U2 No 100.  0.  0. 
LINK2 U3 No 100000.  0.  0. 
LINK2 R1 No  0.  0.  
LINK2 R2 No  0.  0.  
LINK2 R3 No  0.  0.  

 
 
Table:  Area Section Properties, Part 1 of 4 

Table:  Area Section Properties, Part 1 of 4 

Section Material MatAngle AreaType Type DrillDOF Thickness BendThic
k 

  Degrees    ft ft 

ASEC1 A36 0. Shell Shell-Thin Yes 1. 1. 
ConcDeck 4000Psi 0. Shell Shell-Thin Yes 0.6667 0.6667 

 
 
Table:  Area Section Properties, Part 2 of 4 

Table:  Area Section Properties, Part 2 of 4 

Section Arc InComp CoordSys Color TotalWt TotalMass 
 Degrees    Kip Kip-s2/ft 

ASEC1    Green 5333.16 165.76 
ConcDeck    12615935 2388.592 74.24 

 
 
Table:  Area Section Properties, Part 3 of 4 

Table:  Area Section Properties, Part 3 of 4 

Section F11Mod F22Mod F12Mod M11Mod M22Mod M12Mod V13Mod 
        

ASEC1 1. 1. 1. 1. 1. 1. 1. 
ConcDeck 1. 1. 1. 1. 1. 1. 1. 

 
 
Table:  Area Section Properties, Part 4 of 4 

Table:  Area Section Properties, Part 4 of 4 

Section V23Mod MMod WMod GUID Notes 
      

ASEC1 1. 1. 1. 6f5825de-a2dc-451c-
a3c5-5df2377eea92 

Added 2/15/2016 
12:48:48 PM 
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Table:  Area Section Properties, Part 4 of 4 

Section V23Mod MMod WMod GUID Notes 
      

ConcDeck 1. 1.2 1.2 6aa652a7-753e-47a5-
9f99-1d2dc88054b2 

Added 2/15/2016 
12:49:15 PM 
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Section 2  US 24 Bridge Load Cases 

Table:  Load Case Definitions, Part 1 of 3 

Table:  Load Case Definitions, Part 1 of 3 

Case Type InitialCond ModalCase BaseCase MassSource DesTypeOpt 
       

DEAD NonStatic Zero    Prog Det 
LIVELOAD LinMoving Zero    Prog Det 

PDELTA NonStatic Zero    Prog Det 
BUCKLING

_DEAD 
LinBuckling Zero    Prog Det 

MODAL LinModal DEAD    Prog Det 

 
 
Table:  Load Case Definitions, Part 2 of 3 

Table:  Load Case Definitions, Part 2 of 3 

Case DesignType DesActOpt DesignAct AutoType RunCase CaseStatus 
       

DEAD DEAD Prog Det Non-
Composite 

None Yes Finished 

LIVELOAD VEHICLE 
LIVE 

Prog Det Short-Term 
Composite 

None Yes Finished 

PDELTA DEAD Prog Det Non-
Composite 

None No Not Run 

BUCKLING
_DEAD 

DEAD Prog Det Other None No Not Run 

MODAL OTHER Prog Det Other None Yes Finished 

 
 
Table:  Load Case Definitions, Part 3 of 3 

Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

DEAD   
LIVELOAD   

PDELTA   
BUCKLING

_DEAD 
  

MODAL   

 
 
Table:  Case - Static 1 - Load Assignments 

Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 
    

DEAD Load pattern DEAD 1. 
PDELTA Load pattern DEAD 1. 
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Table:  Case - Static 2 - Nonlinear Load Application 

Table:  Case - Static 2 - Nonlinear Load Application 

Case LoadApp MonitorDOF MonitorJt 
    

DEAD Full Load U1 14 
PDELTA Full Load U1 14 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Case Unloading GeoNonLin ResultsSave MaxTotal MaxNull 
      

DEAD Unload Entire None Final State 200 50 
PDELTA Unload Entire Large Displ Final State 200 50 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Case MaxIterCS MaxIterNR ItConvTol UseEvStep EvLumpTol LSPerIter 
       

DEAD 10 40 1.0000E-04 Yes 0.01 20 
PDELTA 10 40 1.0000E-04 Yes 0.01 20 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Case LSTol LSStepFact StageSave StageMi
nIns 

StageMinTD 

      

DEAD 0.1 1.618    
PDELTA 0.1 1.618    

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Case FrameTC FrameHinge CableTC LinkTC LinkOther TimeDepMa
t 

       

DEAD Yes Yes Yes Yes Yes  
PDELTA Yes Yes Yes Yes Yes  

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TFMaxIter TFTol TFAccelFact TFNoStop 
     

DEAD 10 0.01 1. No 
PDELTA 10 0.01 1. No 
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Table:  Case - Moving Load 1 - Lane Assignments 

Table:  Case - Moving Load 1 - Lane Assignments 

Case AssignNum VehClass ScaleFactor MinLoaded MaxLoaded NumLa
nes 

       

LIVELOAD 1 HS20LOADING 1. 0 2 6 

 
 
Table:  Case - Moving Load 2 - Lanes Loaded 

Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 
   

LIVELOAD 1 CENLANES 
LIVELOAD 1 CNTLANE2 
LIVELOAD 1 LFTLANE1 
LIVELOAD 1 LFTLANE2 
LIVELOAD 1 RGTLANE1 
LIVELOAD 1 RTLANE2 

 
 
Table:  Case - Moving Load 3 - MultiLane Factors 

Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 1 1.2 
LIVELOAD 2 1. 
LIVELOAD 3 0.85 
LIVELOAD 4 0.65 
LIVELOAD 5 0.65 
LIVELOAD 6 0.75 
LIVELOAD 7 0.75 
LIVELOAD 8 0.75 
LIVELOAD 9 0.75 
LIVELOAD 10 0.75 
LIVELOAD 11 0.75 
LIVELOAD 12 0.75 

 
 
Table:  Case - Modal 1 - General, Part 1 of 2 

Table:  Case - Modal 1 - General, Part 1 of 2 

Case ModeType MaxNumMo
des 

MinNumMo
des 

EigenShift EigenCutoff EigenTol 

    Cyc/sec Cyc/sec  

MODAL Eigen 30 1 0.0000E+00 0.0000E+00 1.0000E-09 
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Table:  Case - Modal 1 - General, Part 2 of 2 

Table:  Case - Modal 1 - General, 
Part 2 of 2 

Case AutoShift 
  

MODAL Yes 
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Section 3  US 24 Bridge Modal Analysis Output 

Table:  Modal Load Participation Ratios 

Table:  Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 
   Percent Percent 

MODAL Acceleration UX 99.7876 56.8782 
MODAL Acceleration UY 99.7729 55.5977 
MODAL Acceleration UZ 95.4678 17.9913 

 
 
Table:  Modal Participating Mass Ratios, Part 1 of 3 

Table:  Modal Participating Mass Ratios, Part 1 of 3 

OutputCase StepTyp
e 

StepNum Period UX UY UZ SumUX 

   Sec     

MODAL Mode 1. 1.945338 0.28182 4.900E-18 6.877E-05 0.28182 
MODAL Mode 2. 1.641859 2.771E-17 0.15365 2.345E-17 0.28182 
MODAL Mode 3. 1.607784 0.09449 0. 3.354E-05 0.37631 
MODAL Mode 4. 1.148779 1.661E-17 0.00891 6.595E-19 0.37631 
MODAL Mode 5. 1.00383 0.14589 1.060E-16 2.030E-05 0.5222 
MODAL Mode 6. 0.936634 3.151E-17 0.00017 7.515E-18 0.5222 
MODAL Mode 7. 0.870946 3.139E-05 6.446E-18 0.02624 0.52224 
MODAL Mode 8. 0.652339 0.00154 6.671E-15 0.13933 0.52378 
MODAL Mode 9. 0.556076 4.818E-17 0.00679 2.864E-17 0.52378 
MODAL Mode 10. 0.54103 2.470E-17 1.442E-06 3.475E-17 0.52378 
MODAL Mode 11. 0.456406 0.00064 9.192E-17 0.00017 0.52442 
MODAL Mode 12. 0.425114 8.941E-16 9.399E-05 1.761E-16 0.52442 
MODAL Mode 13. 0.413113 1.824E-15 6.507E-05 1.137E-16 0.52442 
MODAL Mode 14. 0.352426 8.384E-15 0.07429 5.664E-15 0.52442 
MODAL Mode 15. 0.351373 7.693E-15 2.964E-09 2.112E-15 0.52442 
MODAL Mode 16. 0.310727 0.00148 2.062E-15 0.00489 0.52591 
MODAL Mode 17. 0.302514 3.823E-15 0.00026 1.868E-15 0.52591 
MODAL Mode 18. 0.277762 1.438E-14 0.00022 1.440E-14 0.52591 
MODAL Mode 19. 0.256964 8.798E-14 0.21877 5.042E-14 0.52591 
MODAL Mode 20. 0.245218 0.03091 7.719E-14 0.00438 0.55682 
MODAL Mode 21. 0.245169 4.397E-14 0.06244 2.079E-13 0.55682 
MODAL Mode 22. 0.233681 5.603E-16 0.00094 5.651E-14 0.55682 
MODAL Mode 23. 0.225049 0.01104 2.529E-15 0.00083 0.56786 
MODAL Mode 24. 0.218159 4.617E-13 2.363E-05 2.044E-15 0.56786 
MODAL Mode 25. 0.200153 9.087E-16 0.01034 1.383E-14 0.56786 
MODAL Mode 26. 0.194539 4.720E-14 0.00525 7.732E-15 0.56786 
MODAL Mode 27. 0.191342 8.180E-15 0.01304 2.551E-14 0.56786 
MODAL Mode 28. 0.18975 4.522E-14 0.00048 3.444E-14 0.56786 
MODAL Mode 29. 0.18761 0.00092 7.011E-15 0.00396 0.56878 
MODAL Mode 30. 0.178726 3.436E-15 0.00026 1.153E-13 0.56878 
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Table:  Modal Participating Mass Ratios, Part 2 of 3 

Table:  Modal Participating Mass Ratios, Part 2 of 3 

OutputCase StepType StepNum SumUY SumUZ RX RY RZ 
        

MODAL Mode 1. 4.900E-18 6.877E-05 4.059E-18 0.00126 1.052E-17 
MODAL Mode 2. 0.15365 6.877E-05 0.46157 2.207E-18 1.121E-05 
MODAL Mode 3. 0.15365 0.0001 0. 0.05213 8.473E-20 
MODAL Mode 4. 0.16256 0.0001 0.0034 2.160E-20 6.599E-05 
MODAL Mode 5. 0.16256 0.00012 1.157E-16 0.00206 2.440E-16 
MODAL Mode 6. 0.16273 0.00012 0.00011 8.085E-18 0.01893 
MODAL Mode 7. 0.16273 0.02636 3.191E-18 2.195E-07 1.468E-18 
MODAL Mode 8. 0.16273 0.16568 3.231E-15 1.973E-06 7.878E-15 
MODAL Mode 9. 0.16952 0.16568 0.0033 2.514E-17 8.167E-06 
MODAL Mode 10. 0.16952 0.16568 2.873E-06 9.145E-18 0.04514 
MODAL Mode 11. 0.16952 0.16586 7.827E-18 0.00743 6.501E-17 
MODAL Mode 12. 0.16961 0.16586 0.00037 1.539E-15 0.01877 
MODAL Mode 13. 0.16968 0.16586 0.01206 1.950E-15 0.00141 
MODAL Mode 14. 0.24396 0.16586 0.05418 4.429E-17 4.497E-06 
MODAL Mode 15. 0.24396 0.16586 2.054E-07 1.912E-14 0.00143 
MODAL Mode 16. 0.24396 0.17075 1.261E-19 0.00015 3.403E-14 
MODAL Mode 17. 0.24422 0.17075 0.00023 1.310E-14 0.00119 
MODAL Mode 18. 0.24444 0.17075 0.00013 1.028E-14 0.24666 
MODAL Mode 19. 0.46321 0.17075 0.11494 3.440E-16 0.00054 
MODAL Mode 20. 0.46321 0.17513 1.182E-14 0.00025 4.579E-15 
MODAL Mode 21. 0.52565 0.17513 0.04168 2.790E-15 0.00056 
MODAL Mode 22. 0.52659 0.17513 0.0002 8.311E-15 0.13031 
MODAL Mode 23. 0.52659 0.17595 3.493E-15 0.00676 6.356E-14 
MODAL Mode 24. 0.52661 0.17595 2.978E-05 1.914E-13 0.0166 
MODAL Mode 25. 0.53695 0.17595 0.00556 3.527E-18 0.00193 
MODAL Mode 26. 0.5422 0.17595 0.00077 8.926E-16 0.00042 
MODAL Mode 27. 0.55524 0.17595 0.00112 5.307E-17 0.00251 
MODAL Mode 28. 0.55572 0.17595 5.045E-05 3.497E-15 3.841E-05 
MODAL Mode 29. 0.55572 0.17991 4.749E-15 8.091E-06 4.515E-15 
MODAL Mode 30. 0.55598 0.17991 4.094E-06 1.027E-13 8.706E-06 

 
 
Table:  Modal Participating Mass Ratios, Part 3 of 3 

Table:  Modal Participating Mass Ratios, Part 3 of 3 

OutputCase StepType StepNum SumRX SumRY SumRZ 
      

MODAL Mode 1. 4.059E-18 0.00126 1.052E-17 
MODAL Mode 2. 0.46157 0.00126 1.121E-05 
MODAL Mode 3. 0.46157 0.05339 1.121E-05 
MODAL Mode 4. 0.46497 0.05339 7.721E-05 
MODAL Mode 5. 0.46497 0.05545 7.721E-05 
MODAL Mode 6. 0.46508 0.05545 0.019 
MODAL Mode 7. 0.46508 0.05545 0.019 
MODAL Mode 8. 0.46508 0.05545 0.019 
MODAL Mode 9. 0.46837 0.05545 0.01901 
MODAL Mode 10. 0.46838 0.05545 0.06415 
MODAL Mode 11. 0.46838 0.06288 0.06415 
MODAL Mode 12. 0.46875 0.06288 0.08292 
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Table:  Modal Participating Mass Ratios, Part 3 of 3 

OutputCase StepType StepNum SumRX SumRY SumRZ 
      

MODAL Mode 13. 0.48081 0.06288 0.08434 
MODAL Mode 14. 0.53499 0.06288 0.08434 
MODAL Mode 15. 0.53499 0.06288 0.08577 
MODAL Mode 16. 0.53499 0.06303 0.08577 
MODAL Mode 17. 0.53522 0.06303 0.08696 
MODAL Mode 18. 0.53535 0.06303 0.33362 
MODAL Mode 19. 0.65029 0.06303 0.33416 
MODAL Mode 20. 0.65029 0.06328 0.33416 
MODAL Mode 21. 0.69197 0.06328 0.33473 
MODAL Mode 22. 0.69217 0.06328 0.46504 
MODAL Mode 23. 0.69217 0.07004 0.46504 
MODAL Mode 24. 0.6922 0.07004 0.48164 
MODAL Mode 25. 0.69776 0.07004 0.48357 
MODAL Mode 26. 0.69853 0.07004 0.48399 
MODAL Mode 27. 0.69965 0.07004 0.4865 
MODAL Mode 28. 0.6997 0.07004 0.48654 
MODAL Mode 29. 0.6997 0.07005 0.48654 
MODAL Mode 30. 0.6997 0.07005 0.48655 

 
 
Table:  Modal Participation Factors, Part 1 of 2 

Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNu
m 

Period UX UY UZ RX 

   Sec Kip-ft Kip-ft Kip-ft Kip-ft 

MODAL Mode 1. 1.945338 -15.498306 -6.433E-08 0.242095 2.907E-06 
MODAL Mode 2. 1.641859 -1.532E-07 11.69422 1.414E-07 -1002.09197 
MODAL Mode 3. 1.607784 8.974157 1.844E-09 -0.16908 -1.771E-07 
MODAL Mode 4. 1.148779 1.194E-07 2.798335 -2.371E-08 82.038883 
MODAL Mode 5. 1.00383 -11.151026 3.016E-07 0.131531 -0.000016 
MODAL Mode 6. 0.936634 1.621E-07 0.359254 -8.003E-08 -13.912451 
MODAL Mode 7. 0.870946 0.164114 6.708E-08 4.728703 -2.158E-06 
MODAL Mode 8. 0.652339 1.147153 -2.344E-06 10.897205 0.00008 
MODAL Mode 9. 0.556076 2.073E-07 1.724925 1.562E-07 -41.26951 
MODAL Mode 10. 0.54103 1.427E-07 -0.029147 1.721E-07 2.095357 
MODAL Mode 11. 0.456406 0.743851 2.095E-07 -0.382597 2.918E-07 
MODAL Mode 12. 0.425114 8.964E-07 -0.207637 -3.874E-07 58.296911 
MODAL Mode 13. 0.413113 -1.269E-06 -1.926522 3.113E-07 264.095732 
MODAL Mode 14. 0.352426 2.669E-06 7.65279 -2.197E-06 -319.195484 
MODAL Mode 15. 0.351373 -2.483E-06 -0.008426 1.342E-06 1.081083 
MODAL Mode 16. 0.310727 1.121891 1.300E-06 2.042244 2.102E-06 
MODAL Mode 17. 0.302514 1.784E-06 -0.503169 -1.262E-06 24.243717 
MODAL Mode 18. 0.277762 -3.473E-06 0.437386 3.503E-06 -16.692993 
MODAL Mode 19. 0.256964 8.739E-06 13.934405 -6.556E-06 -509.622446 
MODAL Mode 20. 0.245218 5.138776 -8.321E-06 -1.931528 -0.000145 
MODAL Mode 21. 0.245169 -6.303E-06 6.985699 0.000013 -277.332101 
MODAL Mode 22. 0.233681 -7.826E-07 -0.928845 6.940E-06 22.56955 
MODAL Mode 23. 0.225049 3.057414 2.271E-06 -0.838758 0.000036 
MODAL Mode 24. 0.218159 -0.00002 -0.012234 -1.320E-06 17.462826 
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Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNu
m 

Period UX UY UZ RX 

   Sec Kip-ft Kip-ft Kip-ft Kip-ft 

MODAL Mode 25. 0.200153 8.825E-07 3.18138 -3.434E-06 -121.471866 
MODAL Mode 26. 0.194539 6.390E-06 -2.026315 -2.567E-06 34.650261 
MODAL Mode 27. 0.191342 2.683E-06 3.105497 -4.663E-06 -34.575269 
MODAL Mode 28. 0.18975 6.273E-06 -0.56999 -5.418E-06 5.958077 
MODAL Mode 29. 0.18761 0.896553 -2.714E-06 -1.837404 0.000117 
MODAL Mode 30. 0.178726 -1.444E-06 -0.412503 -9.915E-06 -0.464659 

 
 
Table:  Modal Participation Factors, Part 2 of 2 

Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-ft Kip-ft Kip-ft-s2 Kip-ft 

MODAL Mode 1. -263.331681 0.000023 1. 10.43205 
MODAL Mode 2. 0.000011 29.637681 1. 14.64496 
MODAL Mode 3. 1694.968966 -2.168E-06 1. 15.2723 
MODAL Mode 4. 1.115E-06 66.130451 1. 29.91484 
MODAL Mode 5. -337.030932 -0.000112 1. 39.17776 
MODAL Mode 6. -0.000021 -1141.54683 1. 45.00073 
MODAL Mode 7. 3.511425 -7.929E-06 1. 52.04485 
MODAL Mode 8. -10.432281 0.000626 1. 92.77116 
MODAL Mode 9. 0.000038 -18.670764 1. 127.67054 
MODAL Mode 10. -0.000023 -1571.06947 1. 134.8703 
MODAL Mode 11. 640.067378 -0.000056 1. 189.5207 
MODAL Mode 12. 0.000293 839.082673 1. 218.4484 
MODAL Mode 13. -0.000329 -234.133665 1. 231.32477 
MODAL Mode 14. -0.00005 16.514474 1. 317.85194 
MODAL Mode 15. 0.001031 -277.142197 1. 319.75885 
MODAL Mode 16. -90.108195 -0.001251 1. 408.88602 
MODAL Mode 17. 0.000848 -382.965623 1. 431.38916 
MODAL Mode 18. -0.000751 -3634.943 1. 511.69671 
MODAL Mode 19. 0.000143 -185.833288 1. 597.87966 
MODAL Mode 20. -118.162807 -0.000673 1. 656.53298 
MODAL Mode 21. -0.000403 184.191866 1. 656.79096 
MODAL Mode 22. -0.000682 -2673.01945 1. 722.95761 
MODAL Mode 23. -610.867416 0.001932 1. 779.48072 
MODAL Mode 24. -0.003267 917.691607 1. 829.49691 
MODAL Mode 25. -0.000014 302.096268 1. 985.45459 
MODAL Mode 26. 0.000225 128.276496 1. 1043.14956 
MODAL Mode 27. 0.000057 -346.270742 1. 1078.29891 
MODAL Mode 28. 0.000443 42.646948 1. 1096.46685 
MODAL Mode 29. -20.526546 -0.000394 1. 1121.63023 
MODAL Mode 30. 0.002396 -17.438822 1. 1235.89659 
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Table:  Modal Periods And Frequencies 

Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 
   Sec Cyc/sec rad/sec rad2/sec2 

MODAL Mode 1. 1.945338 5.1405E-01 3.2299E+00 1.0432E+01 
MODAL Mode 2. 1.641859 6.0907E-01 3.8269E+00 1.4645E+01 
MODAL Mode 3. 1.607784 6.2197E-01 3.9080E+00 1.5272E+01 
MODAL Mode 4. 1.148779 8.7049E-01 5.4694E+00 2.9915E+01 
MODAL Mode 5. 1.00383 9.9618E-01 6.2592E+00 3.9178E+01 
MODAL Mode 6. 0.936634 1.0677E+00 6.7083E+00 4.5001E+01 
MODAL Mode 7. 0.870946 1.1482E+00 7.2142E+00 5.2045E+01 
MODAL Mode 8. 0.652339 1.5329E+00 9.6318E+00 9.2771E+01 
MODAL Mode 9. 0.556076 1.7983E+00 1.1299E+01 1.2767E+02 
MODAL Mode 10. 0.54103 1.8483E+00 1.1613E+01 1.3487E+02 
MODAL Mode 11. 0.456406 2.1910E+00 1.3767E+01 1.8952E+02 
MODAL Mode 12. 0.425114 2.3523E+00 1.4780E+01 2.1845E+02 
MODAL Mode 13. 0.413113 2.4206E+00 1.5209E+01 2.3132E+02 
MODAL Mode 14. 0.352426 2.8375E+00 1.7828E+01 3.1785E+02 
MODAL Mode 15. 0.351373 2.8460E+00 1.7882E+01 3.1976E+02 
MODAL Mode 16. 0.310727 3.2183E+00 2.0221E+01 4.0889E+02 
MODAL Mode 17. 0.302514 3.3056E+00 2.0770E+01 4.3139E+02 
MODAL Mode 18. 0.277762 3.6002E+00 2.2621E+01 5.1170E+02 
MODAL Mode 19. 0.256964 3.8916E+00 2.4452E+01 5.9788E+02 
MODAL Mode 20. 0.245218 4.0780E+00 2.5623E+01 6.5653E+02 
MODAL Mode 21. 0.245169 4.0788E+00 2.5628E+01 6.5679E+02 
MODAL Mode 22. 0.233681 4.2793E+00 2.6888E+01 7.2296E+02 
MODAL Mode 23. 0.225049 4.4435E+00 2.7919E+01 7.7948E+02 
MODAL Mode 24. 0.218159 4.5838E+00 2.8801E+01 8.2950E+02 
MODAL Mode 25. 0.200153 4.9962E+00 3.1392E+01 9.8545E+02 
MODAL Mode 26. 0.194539 5.1404E+00 3.2298E+01 1.0431E+03 
MODAL Mode 27. 0.191342 5.2262E+00 3.2837E+01 1.0783E+03 
MODAL Mode 28. 0.18975 5.2701E+00 3.3113E+01 1.0965E+03 
MODAL Mode 29. 0.18761 5.3302E+00 3.3491E+01 1.1216E+03 
MODAL Mode 30. 0.178726 5.5951E+00 3.5155E+01 1.2359E+03 
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Section 1  US 24 Bridge Analysis Input 

Table:  Material Properties 01 - General, Part 1 of 2 

Table:  Material Properties 01 - General, Part 1 of 2 

Material Type SymType TempDepen
d 

Color GUID 

      

4000Psi Concrete Isotropic No Red  
A36 Steel Isotropic No Blue  

A416Gr270 Tendon Uniaxial No Cyan  
A514 Steel Isotropic No Cyan  
A588 Steel Isotropic No Cyan  

A615Gr60 Rebar Uniaxial No Green  
A992Fy50 Steel Isotropic No Cyan  

ASTM 
A586G 

Other Isotropic No Gray8Dark  

Substr Concrete Isotropic No Red  

 
 
Table:  Material Properties 01 - General, Part 2 of 2 

Table:  Material Properties 01 - General, Part 2 of 2 

Material Notes 
  

4000Psi Customary f'c 4000 psi 9/27/2014 
9:39:17 PM 

A36 United States ASTM A36 Grade 36 
added 9/28/2014 6:52:31 PM 

A416Gr270 ASTM A416 Grade 270 2/7/2016 
6:46:12 PM 

A514 ASTM A992 Grade 50 9/27/2014 
9:39:17 PM 

A588 ASTM A992 Grade 50 9/27/2014 
9:39:17 PM 

A615Gr60 ASTM A615 Grade 60 2/7/2016 
6:46:12 PM 

A992Fy50 ASTM A992 Grade 50 9/27/2014 
9:39:17 PM 

ASTM 
A586G 

MAT added 2/7/2016 10:55:03 PM 

Substr Customary f'c 4000 psi 9/27/2014 
9:39:17 PM 

 
 
Table:  Material Properties 02 - Basic Mechanical Properties 

Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

4000Psi 1.5000E-01 4.6621E-03 591887. 246619.58 0.2 5.5000E-06 
A36 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

A416Gr270 4.9000E-01 1.5230E-02 4104000.   6.5000E-06 
A514 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
A588 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

A615Gr60 4.9000E-01 1.5230E-02 4176000.   6.5000E-06 
A992Fy50 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
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Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

ASTM 
A586G 

4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

Substr 1.5000E-01 4.6621E-03 591887. 246619.58 0.2 5.5000E-06 

 
 
Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Material Fy Fu EffFy EffFu SSCurveOpt SSHysType SHard 
 Kip/ft2 Kip/ft2 Kip/ft2 Kip/ft2    

A36 5184. 8352. 7776. 9187.2 Simple Kinematic 0.02 
A514 14400. 17280. 14400. 17280. Simple Kinematic 0.015 
A588 7200. 10080. 7920. 10296. Simple Kinematic 0.015 

A992Fy50 7200. 9360. 7920. 10296. Simple Kinematic 0.015 

 
 
Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Material SMax SRup FinalSlope 
    

A36 0.14 0.2 -0.1 
A514 0.11 0.17 -0.1 
A588 0.11 0.17 -0.1 

A992Fy50 0.11 0.17 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Material Fc LtWtConc SSCurveOpt SSHysType SFc SCap FinalSlop
e 

 Kip/ft2       

4000Psi 576. No Mander Takeda 0.002219 0.005 -0.1 
Substr 576. No Mander Takeda 0.002219 0.005 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Table:  Material Properties 03b - Concrete 
Data, Part 2 of 2 

Material FAngle DAngle 
 Degrees Degrees 

4000Psi 0. 0. 
Substr 0. 0. 

 
 
Table:  Frame Section Properties 01 - General, Part 1 of 8 

Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

ARL0R1 A992Fy50 SD Section    
ARR1R3 A992Fy50 SD Section    
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Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

ARR3R4 A992Fy50 SD Section    
ARR4R7 A992Fy50 SD Section    

Cable ASTM A586G General 1. 1.  
DIAR1 A992Fy50 I/Wide Flange 3. 1.25 0.0729 

DIAR2R7 A992Fy50 I/Wide Flange 2.9729 1.25 0.0625 
FLBM37 A36 I/Wide Flange 6.0625 1.3333 0.1146 
FLBM5 A36 I/Wide Flange 6.0938 1.3333 0.1302 

FLBMT0 A36 I/Wide Flange 5.9792 1.3333 0.0729 
FLBMT1246 A36 I/Wide Flange 6.1458 1.3333 0.1563 

FSEC1 A992Fy50 I/Wide Flange 1. 0.41667 0.03167 
HP14X102 A36 I/Wide Flange 1.16667 1.23333 0.05875 
HP14X73 A36 I/Wide Flange 1.13333 1.21667 0.04208 
HP14X89 A36 I/Wide Flange 1.15 1.225 0.05125 

Portal Brace A992Fy50 I/Wide Flange 2.2917 1.25 0.0625 
STRUTR2R7 A992Fy50 I/Wide Flange 2.9729 1.25 0.0625 

TGL0L2 A992Fy50 SD Section    
TGL2L6 A992Fy50 SD Section    
TGL6L8 A992Fy50 SD Section    

W30X116 A36 I/Wide Flange 2.5 0.875 0.0708 
W30X99 A36 I/Wide Flange 2.475 0.875 0.0558 

 
 
Table:  Frame Section Properties 01 - General, Part 2 of 8 

Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

ARL0R1    1.3718 1.889054 1.96309 
ARR1R3    1.3001 1.837566 1.893222 
ARR3R4    1.229 1.781335 1.824012 
ARR4R7    1.1579 1.720006 1.754793 

Cable    0.0442 0.000311 0.000156 
DIAR1 0.0729 1.25 0.0729 0.3903 0.000674 0.53171 

DIAR2R7 0.0625 1.25 0.0625 0.3342 0.000426 0.451229 
FLBM37 0.0365 1.3333 0.1146 0.5185 0.00136 3.306855 
FLBM5 0.0365 1.3333 0.1302 0.5601 0.001935 3.691192 

FLBMT0 0.0365 1.3333 0.0729 0.4073 0.000427 2.299202 
FLBMT1246 0.0365 1.3333 0.1563 0.6297 0.003238 4.342553 

FSEC1 0.02083 0.41667 0.03167 0.0459 0.000011 0.007615 
HP14X102 0.05875 1.23333 0.05875 0.2083 0.00026 0.050637 
HP14X73 0.04208 1.21667 0.04208 0.1486 0.000097 0.035156 
HP14X89 0.05125 1.225 0.05125 0.1813 0.000173 0.043596 

Portal Brace 0.0625 1.25 0.0625 0.2917 0.00037 0.247143 
STRUTR2R7 0.0625 1.25 0.0625 0.3342 0.000426 0.451229 

TGL0L2    1.5212 2.985977 21.111538 
TGL2L6    1.5853 3.009519 22.486462 
TGL6L8    1.3929 2.93165 18.380184 

W30X116 0.0471 0.875 0.0708 0.235 0.000278 0.234322 
W30X99 0.0433 0.875 0.0558 0.2 0.00016 0.190534 
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Table:  Frame Section Properties 01 - General, Part 3 of 8 

Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

ARL0R1 1.105147 0. 1.0352 0.3048 1.090229 0.982353 
ARR1R3 1.048333 0. 0.9697 0.3044 1.050469 0.931851 
ARR3R4 0.990627 0. 0.9045 0.3039 1.011048 0.880557 
ARR4R7 0.931581 0. 0.8388 0.3036 0.971582 0.828072 

Cable 0.000156 0. 0.0398 0.0398 1. 1. 
DIAR1 0.023823 0. 0.2187 0.1519 0.354473 0.038116 

DIAR2R7 0.020403 0. 0.1858 0.1302 0.303562 0.032645 
FLBM37 0.045294 0. 0.2213 0.2547 1.090921 0.067943 
FLBM5 0.051457 0. 0.2224 0.2893 1.211458 0.077187 

FLBMT0 0.028821 0. 0.2182 0.162 0.769067 0.043233 
FLBMT1246 0.061767 0. 0.2243 0.3473 1.413177 0.092653 

FSEC1 0.000382 0. 0.0208 0.022 0.01523 0.001836 
HP14X102 0.018326 0. 0.0685 0.1208 0.086806 0.029717 
HP14X73 0.012587 0. 0.0477 0.0853 0.06204 0.020691 
HP14X89 0.015721 0. 0.0589 0.1046 0.075819 0.025668 

Portal Brace 0.020389 0. 0.1432 0.1302 0.215686 0.032623 
STRUTR2R7 0.020403 0. 0.1858 0.1302 0.303562 0.032645 

TGL0L2 1.392646 0. 0.7611 0.5887 4.564657 0.903242 
TGL2L6 1.443454 0. 0.7637 0.6407 4.851029 0.936199 
TGL6L8 1.291031 0. 0.7551 0.4856 3.992047 0.837327 

W30X116 0.007926 0. 0.1178 0.1033 0.187458 0.018116 
W30X99 0.006246 0. 0.1072 0.0814 0.153967 0.014277 

 
 
Table:  Frame Section Properties 01 - General, Part 4 of 8 

Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

ARL0R1 1.442008 1.18804 1.19625 0.89756  No 
ARR1R3 1.380691 1.124189 1.20675 0.89798  No 
ARR3R4 1.319954 1.06015 1.21826 0.8978  No 
ARR4R7 1.259211 0.995372 1.23104 0.89695  No 

Cable 1. 1. 1. 1. 0. No 
DIAR1 0.415201 0.060745 1.16715 0.24705  No 

DIAR2R7 0.354102 0.051609 1.16189 0.24707  No 
FLBM37 1.219316 0.103804 2.5254 0.29556  No 
FLBM5 1.345766 0.11767 2.56712 0.3031  No 

FLBMT0 0.884589 0.06674 2.37588 0.26601  No 
FLBMT1246 1.55867 0.140869 2.62606 0.31319  No 

FSEC1 0.017346 0.00285 0.4073 0.09128  No 
HP14X102 0.097801 0.045602 0.49301 0.29659  No 
HP14X73 0.068287 0.031597 0.48638 0.29103  No 
HP14X89 0.084491 0.039178 0.49044 0.29451  No 

Portal Brace 0.247509 0.050944 0.92051 0.2644  No 
STRUTR2R7 0.354102 0.051609 1.16189 0.24707  No 

TGL0L2 5.205132 1.360108 3.7254 0.95683  No 
TGL2L6 5.502079 1.409543 3.76623 0.95422  No 
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Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

TGL6L8 4.613239 1.261238 3.63259 0.96274  No 
W30X116 0.215982 0.028411 0.9986 0.18365  No 
W30X99 0.178582 0.022469 0.97609 0.17673  No 

 
 
Table:  Frame Section Properties 01 - General, Part 5 of 8 

Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

ARL0R1 No Green 144.721 4.5 No 1. 
ARR1R3 No Red 258.583 8.04 No 1. 
ARR3R4 No Yellow 116.26 3.61 No 1. 
ARR4R7 No Blue 315.891 9.82 No 1. 

Cable No Gray8Dark 35.721 1.11 No 1. 
DIAR1 No Green 37.347 1.16 No 1. 

DIAR2R7 No Yellow 149.857 4.66 No 1. 
FLBM37 No Cyan 40.321 1.25 No 1. 
FLBM5 No Magenta 29.037 0.9 No 1. 

FLBMT0 No White 21.116 0.66 No 1. 
FLBMT1246 No Blue 130.58 4.06 No 1. 

FSEC1 No Cyan 0. 0. No 1. 
HP14X102 No Gray8Dark 18.196 0.57 Yes 1. 
HP14X73 No Red 64.898 2.02 Yes 1. 
HP14X89 No Yellow 15.83 0.49 Yes 1. 

Portal Brace No Magenta 11.864 0.37 No 1. 
STRUTR2R7 No Gray8Dark 82.872 2.58 No 1. 

TGL0L2 No Blue 261.723 8.13 No 1. 
TGL2L6 No Magenta 545.515 16.96 No 1. 
TGL6L8 No Gray8Dark 119.827 3.72 No 1. 

W30X116 No Yellow 338.379 10.52 No 1. 
W30X99 No Red 0. 0. No 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 6 of 8 

Table:  Frame Section Properties 01 - General, Part 6 of 8 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

ARL0R1 1. 1. 1. 1. 1. 1.2 
ARR1R3 1. 1. 1. 1. 1. 1.2 
ARR3R4 1. 1. 1. 1. 1. 1.2 
ARR4R7 1. 1. 1. 1. 1. 1.2 

Cable 1. 1. 1. 1. 1. 1. 
DIAR1 1. 1. 1. 1. 1. 1. 

DIAR2R7 1. 1. 1. 1. 1. 1. 
FLBM37 1. 1. 1. 1. 1. 1.15 
FLBM5 1. 1. 1. 1. 1. 1.15 

FLBMT0 1. 1. 1. 1. 1. 1.15 
FLBMT1246 1. 1. 1. 1. 1. 1.15 

FSEC1 1. 1. 1. 1. 1. 1. 
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Table:  Frame Section Properties 01 - General, Part 6 of 8 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

HP14X102 1. 1. 1. 1. 1. 1. 
HP14X73 1. 1. 1. 1. 1. 1. 
HP14X89 1. 1. 1. 1. 1. 1. 

Portal Brace 1. 1. 1. 1. 1. 1. 
STRUTR2R7 1. 1. 1. 1. 1. 1. 

TGL0L2 1. 1. 1. 1. 1. 1.15 
TGL2L6 1. 1. 1. 1. 1. 1.15 
TGL6L8 1. 1. 1. 1. 1. 1.15 

W30X116 1. 1. 1. 1. 1. 1.1 
W30X99 1. 1. 1. 1. 1. 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 7 of 8 

Table:  Frame Section Properties 01 - General, Part 7 of 8 

SectionName WMod SectInFile FileName GUID 
     

ARL0R1 1.2    
ARR1R3 1.2    
ARR3R4 1.2    
ARR4R7 1.2    

Cable 1.    
DIAR1 1.    

DIAR2R7 1.    
FLBM37 1.15    
FLBM5 1.15    

FLBMT0 1.15    
FLBMT1246 1.15    

FSEC1 1.    
HP14X102 1. HP14X102 C:\Program Files\Computers and 

Structures\SAP2000 18\aisc13.pro 
 

HP14X73 1. HP14X73 C:\Program Files\Computers and 
Structures\SAP2000 18\aisc13.pro 

 

HP14X89 1. HP14X89 C:\Program Files\Computers and 
Structures\SAP2000 18\aisc13.pro 

 

Portal Brace 1.    
STRUTR2R7 1.    

TGL0L2 1.15    
TGL2L6 1.15    
TGL6L8 1.15    

W30X116 1.1    
W30X99 1.    

 
 
Table:  Frame Section Properties 01 - General, Part 8 of 8 

Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

ARL0R1 Added 2/7/2016 7:18:29 PM 
ARR1R3 Added 2/7/2016 8:23:51 PM 
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Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

ARR3R4 Added 2/7/2016 8:29:59 PM 
ARR4R7 Added 2/7/2016 8:32:35 PM 

Cable Added 5/31/2016 9:59:30 PM 
DIAR1 Added 2/7/2016 10:35:01 PM 

DIAR2R7 Added 2/7/2016 10:38:41 PM 
FLBM37 Added 9/28/2014 7:12:14 PM 
FLBM5 Added 9/28/2014 7:13:11 PM 

FLBMT0 Added 9/28/2014 7:07:51 PM 
FLBMT1246 Added 9/28/2014 7:10:48 PM 

FSEC1 Added 9/27/2014 9:39:49 PM 
HP14X102 Imported 9/28/2014 8:17:56 PM 

from AISC13.pro 
HP14X73 Imported 9/28/2014 8:18:59 PM 

from AISC13.pro 
HP14X89 Imported 9/28/2014 8:19:10 PM 

from AISC13.pro 
Portal Brace Added 2/7/2016 10:01:07 PM 

STRUTR2R7 Added 2/7/2016 10:08:13 PM 
TGL0L2 Added 2/7/2016 6:44:03 PM 
TGL2L6 Added 2/7/2016 6:56:25 PM 
TGL6L8 Added 2/7/2016 7:04:47 PM 

W30X116 Added 2/7/2016 5:37:44 PM 
W30X99 Added 2/7/2016 5:34:08 PM 

 
 
Table:  Link Property Definitions 01 - General, Part 1 of 3 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Link LinkType Mass Weight RotInert1 RotInert2 RotInert3 
  Kip-s2/ft Kip Kip-ft-s2 Kip-ft-s2 Kip-ft-s2 

LINK1 Linear 0. 0. 0. 0. 0. 
LINK2 Linear 0. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 2 of 3 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Link DefLength DefArea PDM2I PDM2J PDM3I PDM3J 
 ft ft2     

LINK1 1. 1. 0. 0. 0. 0. 
LINK2 1. 1. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 3 of 3 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Link Color GUID Notes 
    

LINK1 Magenta  Added 2/29/2016 3:34:56 PM 
LINK2 Magenta  Added 2/29/2016 3:34:56 PM 
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Table:  Link Property Definitions 02 - Linear 

Table:  Link Property Definitions 02 - Linear 

Link DOF Fixed TransKE RotKE TransCE RotCE DJ 
   Kip/ft Kip-

ft/rad 
Kip-s/ft Kip-ft-s/rad ft 

LINK1 U1 No 100000.  0.   
LINK1 U2 No 100000.  0.  0. 
LINK1 U3 No 100000.  0.  0. 
LINK1 R1 No  0.  0.  
LINK1 R2 No  0.  0.  
LINK1 R3 No  0.  0.  
LINK2 U1 No 100000.  0.   
LINK2 U2 No 100000.  0.  0. 
LINK2 U3 No 100000.  0.  0. 
LINK2 R1 No  0.  0.  
LINK2 R2 No  0.  0.  
LINK2 R3 No  0.  0.  

 
 
Table:  Area Section Properties, Part 1 of 4 

Table:  Area Section Properties, Part 1 of 4 

Section Material MatAngle AreaType Type DrillDOF Thickne
ss 

BendThick 

  Degrees    ft ft 

ASEC1 A36 0. Shell Shell-Thin Yes 1. 1. 
ConcDeck 4000Psi 0. Shell Shell-Thin Yes 0.6667 0.6667 

 
 
Table:  Area Section Properties, Part 2 of 4 

Table:  Area Section Properties, Part 2 of 4 

Section Arc InComp CoordSys Color TotalWt TotalMass 
 Degrees    Kip Kip-s2/ft 

ASEC1    Green 5333.16 165.76 
ConcDeck    12615935 2388.592 74.24 

 
 
Table:  Area Section Properties, Part 3 of 4 

Table:  Area Section Properties, Part 3 of 4 

Section F11Mod F22Mod F12Mod M11Mod M22Mod M12Mod V13Mod 
        

ASEC1 1. 1. 1. 1. 1. 1. 1. 
ConcDeck 1. 1. 1. 1. 1. 1. 1. 

 
 
Table:  Area Section Properties, Part 4 of 4 

Table:  Area Section Properties, Part 4 of 4 

Section V23Mod MMod WMod GUID Notes 
      

ASEC1 1. 1. 1. 6f5825de-a2dc-451c-a3c5-
5df2377eea92 

Added 2/15/2016 12:48:48 
PM 

ConcDeck 1. 1.2 1.2 6aa652a7-753e-47a5-9f99-
1d2dc88054b2 

Added 2/15/2016 12:49:15 
PM 
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Table:  Solid Property Definitions, Part 1 of 2 

Table:  Solid Property Definitions, Part 1 of 2 

SolidProp Material MatAngleA MatAngleB MatAngleC InComp Color 
  Degrees Degrees Degrees   

Substr Substr 0. 0. 0. Yes Green 

 
 
Table:  Solid Property Definitions, Part 2 of 2 

Table:  Solid Property Definitions, Part 2 of 2 

SolidProp GUID Notes TotalWt TotalMass 
   Kip Kip-s2/ft 

Substr   23374.8 726.51 

 
 
Section 2  US 24 Bridge Load Cases 

Table:  Load Case Definitions, Part 1 of 3 

Table:  Load Case Definitions, Part 1 of 3 

Case Type InitialCond ModalCase BaseCase MassSource DesTypeOpt 
       

DEAD NonStatic Zero    Prog Det 
LIVELOAD LinMoving Zero    Prog Det 

PDELTA NonStatic Zero    Prog Det 
BUCKLING

_DEAD 
LinBuckling Zero    Prog Det 

MODAL LinModal DEAD    Prog Det 

 
 
Table:  Load Case Definitions, Part 2 of 3 

Table:  Load Case Definitions, Part 2 of 3 

Case DesignType DesActOpt DesignAct AutoType RunCase CaseStatus 
       

DEAD DEAD Prog Det Non-
Composite 

None Yes Finished 

LIVELOAD VEHICLE 
LIVE 

Prog Det Short-Term 
Composite 

None Yes Finished 

PDELTA DEAD Prog Det Non-
Composite 

None No Not Run 

BUCKLING
_DEAD 

DEAD Prog Det Other None No Not Run 

MODAL OTHER Prog Det Other None Yes Finished 

 
 
Table:  Load Case Definitions, Part 3 of 3 

Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

DEAD   
LIVELOAD   

PDELTA   
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Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

BUCKLING
_DEAD 

  

MODAL   

Table:  Case - Static 1 - Load Assignments 

Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 
    

DEAD Load pattern DEAD 1. 
PDELTA Load pattern DEAD 1. 

 
 
Table:  Case - Static 2 - Nonlinear Load Application 

Table:  Case - Static 2 - Nonlinear Load Application 

Case LoadApp MonitorDOF MonitorJt 
    

DEAD Full Load U1 14 
PDELTA Full Load U1 14 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Case Unloading GeoNonLin ResultsSave MaxTotal MaxNull 
      

DEAD Unload Entire None Final State 200 50 
PDELTA Unload Entire Large Displ Final State 200 50 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Case MaxIterCS MaxIterNR ItConvTol UseEvStep EvLumpTol LSPerIter 
       

DEAD 10 40 1.0000E-04 Yes 0.01 20 
PDELTA 10 40 1.0000E-04 Yes 0.01 20 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Case LSTol LSStepFact StageSave StageMinIn
s 

StageMinTD 

      

DEAD 0.1 1.618    
PDELTA 0.1 1.618    
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Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Case FrameTC FrameHinge CableTC LinkTC LinkOther TimeDepMa
t 

       

DEAD Yes Yes Yes Yes Yes  
PDELTA Yes Yes Yes Yes Yes  

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TFMaxIter TFTol TFAccelFact TFNoStop 
     

DEAD 10 0.01 1. No 
PDELTA 10 0.01 1. No 

 
 
Table:  Case - Moving Load 1 - Lane Assignments 

Table:  Case - Moving Load 1 - Lane Assignments 

Case AssignNum VehClass ScaleFactor MinLoaded MaxLoaded NumLanes 
       

LIVELOAD 1 HS20LOADING 1. 0 4 6 

 
 
Table:  Case - Moving Load 2 - Lanes Loaded 

Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 
   

LIVELOAD 1 CENLANES 
LIVELOAD 1 CNTLANE2 
LIVELOAD 1 LFTLANE1 
LIVELOAD 1 LFTLANE2 
LIVELOAD 1 RGTLANE1 
LIVELOAD 1 RTLANE2 

 
 
Table:  Case - Moving Load 3 - MultiLane Factors 

Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 1 1. 
LIVELOAD 2 1. 
LIVELOAD 3 0.9 
LIVELOAD 4 0.75 
LIVELOAD 5 0.75 
LIVELOAD 6 0.75 
LIVELOAD 7 0.75 
LIVELOAD 8 0.75 
LIVELOAD 9 0.75 
LIVELOAD 10 0.75 
LIVELOAD 11 0.75 
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Table:  Case - Moving Load 3 - MultiLane Factors 

Case NumberLane
s 

ScaleFactor 

   

LIVELOAD 12 0.75 

 
 
Table:  Case - Modal 1 - General, Part 1 of 2 

Table:  Case - Modal 1 - General, Part 1 of 2 

Case ModeType MaxNumMo
des 

MinNumMo
des 

EigenShift EigenCutoff EigenTol 

    Cyc/sec Cyc/sec  

MODAL Eigen 30 1 0.0000E+00 0.0000E+00 1.0000E-09 

Table:  Case - Modal 1 - General, Part 2 of 2 

Table:  Case - Modal 1 - General, 
Part 2 of 2 

Case AutoShift 
  

MODAL Yes 

Section 3  US 24 Bridge Modal Analysis Output 

Table:  Modal Load Participation Ratios 

Table:  Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 
   Percent Percent 

MODAL Acceleration UX 99.3061 51.0424 
MODAL Acceleration UY 98.0978 20.0672 
MODAL Acceleration UZ 98.3971 17.2851 

 
 
Table:  Modal Participating Mass Ratios, Part 1 of 3 

Table:  Modal Participating Mass Ratios, Part 1 of 3 

OutputCase StepType StepNum Period UX UY UZ SumUX 
   Sec     

MODAL   0. 0. 1.281E-15 5.144E-06 0. 

 
 
Table:  Modal Participating Mass Ratios, Part 2 of 3 

Table:  Modal Participating Mass Ratios, Part 2 of 3 

OutputCase StepType StepNum SumUY SumUZ RX RY RZ 
        

MODAL   1.281E-15 5.144E-06 2.855E-14 1.346E-05 8.534E-15 

 
 
Table:  Modal Participating Mass Ratios, Part 3 of 3 

Table:  Modal Participating Mass Ratios, Part 3 of 3 

OutputCase StepType StepNum SumRX SumRY SumRZ 
      

MODAL   2.855E-14 1.346E-05 8.534E-15 
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Table:  Modal Participation Factors, Part 1 of 2 

Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNum Period UX UY UZ RX 
   Sec Kip-ft Kip-ft Kip-ft Kip-ft 

MODAL   0. 0. 9.970E-07 -0.081543 4.933E-06 

 
 
Table:  Modal Participation Factors, Part 2 of 2 

Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-ft Kip-ft Kip-ft-s2 Kip-ft 

MODAL   6.275691 0.000683 0. 0. 

 
 
Table:  Modal Periods And Frequencies 

Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 
   Sec Cyc/sec rad/sec rad2/sec2 

MODAL   0. 0.0000E+00 0.0000E+00 0.0000E+00 
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Section 1  US 24 Bridge Analysis Input 

Table:  Material Properties 01 - General, Part 1 of 2 

Table:  Material Properties 01 - General, Part 1 of 2 

Material Type SymType TempDepen
d 

Color GUID 

      

4000Psi Concrete Isotropic No Red  
A36 Steel Isotropic No Blue  

A416Gr270 Tendon Uniaxial No Cyan  
A514 Steel Isotropic No Cyan  
A588 Steel Isotropic No Cyan  

A615Gr60 Rebar Uniaxial No Green  
A992Fy50 Steel Isotropic No Cyan  

ASTM 
A586G 

Other Isotropic No Gray8Dark  

Substr Concrete Isotropic No Red  

 
 
Table:  Material Properties 01 - General, Part 2 of 2 

Table:  Material Properties 01 - General, Part 2 of 2 

Material Notes 
  

4000Psi Customary f'c 4000 psi 9/27/2014 
9:39:17 PM 

A36 United States ASTM A36 Grade 36 
added 9/28/2014 6:52:31 PM 

A416Gr270 ASTM A416 Grade 270 2/7/2016 
6:46:12 PM 

A514 ASTM A992 Grade 50 9/27/2014 
9:39:17 PM 

A588 ASTM A992 Grade 50 9/27/2014 
9:39:17 PM 

A615Gr60 ASTM A615 Grade 60 2/7/2016 
6:46:12 PM 

A992Fy50 ASTM A992 Grade 50 9/27/2014 
9:39:17 PM 

ASTM 
A586G 

MAT added 2/7/2016 10:55:03 PM 

Substr Customary f'c 4000 psi 9/27/2014 
9:39:17 PM 

 
 
Table:  Material Properties 02 - Basic Mechanical Properties 

Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

4000Psi 1.5000E-01 4.6621E-03 155740. 64891.67 0.2 5.5000E-06 
A36 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

A416Gr270 4.9000E-01 1.5230E-02 4104000.   6.5000E-06 
A514 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
A588 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

A615Gr60 4.9000E-01 1.5230E-02 4176000.   6.5000E-06 
A992Fy50 4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 
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Table:  Material Properties 02 - Basic Mechanical Properties 

Material UnitWeight UnitMass E1 G12 U12 A1 
 Kip/ft3 Kip-s2/ft4 Kip/ft2 Kip/ft2  1/F 

ASTM 
A586G 

4.9000E-01 1.5230E-02 4176000. 1606153.85 0.3 6.5000E-06 

Substr 1.5000E-01 4.6621E-03 155740. 64891.67 0.2 5.5000E-06 

 
 
Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Table:  Material Properties 03a - Steel Data, Part 1 of 2 

Material Fy Fu EffFy EffFu SSCurveOpt SSHysType SHard 
 Kip/ft2 Kip/ft2 Kip/ft2 Kip/ft2    

A36 5184. 8352. 7776. 9187.2 Simple Kinematic 0.02 
A514 14400. 17280. 14400. 17280. Simple Kinematic 0.015 
A588 7200. 10080. 7920. 10296. Simple Kinematic 0.015 

A992Fy50 7200. 9360. 7920. 10296. Simple Kinematic 0.015 

 
 
Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Table:  Material Properties 03a - Steel Data, Part 2 of 2 

Material SMax SRup FinalSlope 
    

A36 0.14 0.2 -0.1 
A514 0.11 0.17 -0.1 
A588 0.11 0.17 -0.1 

A992Fy50 0.11 0.17 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Table:  Material Properties 03b - Concrete Data, Part 1 of 2 

Material Fc LtWtConc SSCurveOpt SSHysType SFc SCap FinalSlope 
 Kip/ft2       

4000Psi 576. No Mander Takeda 0.002219 0.005 -0.1 
Substr 576. No Mander Takeda 0.002219 0.005 -0.1 

 
 
Table:  Material Properties 03b - Concrete Data, Part 2 of 2 

Table:  Material Properties 03b - Concrete 
Data, Part 2 of 2 

Material FAngle DAngle 
 Degrees Degrees 

4000Psi 0. 0. 
Substr 0. 0. 

 
 
Table:  Frame Section Properties 01 - General, Part 1 of 8 

Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

ARL0R1 A992Fy50 SD Section    
ARR1R3 A992Fy50 SD Section    
ARR3R4 A992Fy50 SD Section    



www.manaraa.com

346 
 

Table:  Frame Section Properties 01 - General, Part 1 of 8 

SectionName Material Shape t3 t2 tf 
   ft ft ft 

ARR4R7 A992Fy50 SD Section    
Cable ASTM A586G General 1. 1.  

DIAR1 A992Fy50 I/Wide Flange 3. 1.25 0.0729 
DIAR2R7 A992Fy50 I/Wide Flange 2.9729 1.25 0.0625 
FLBM37 A36 I/Wide Flange 6.0625 1.3333 0.1146 
FLBM5 A36 I/Wide Flange 6.0938 1.3333 0.1302 

FLBMT0 A36 I/Wide Flange 5.9792 1.3333 0.0729 
FLBMT1246 A36 I/Wide Flange 6.1458 1.3333 0.1563 

FSEC1 A992Fy50 I/Wide Flange 1. 0.41667 0.03167 
HP14X102 A36 I/Wide Flange 1.16667 1.23333 0.05875 
HP14X73 A36 I/Wide Flange 1.13333 1.21667 0.04208 
HP14X89 A36 I/Wide Flange 1.15 1.225 0.05125 

Portal Brace A992Fy50 I/Wide Flange 2.2917 1.25 0.0625 
STRUTR2R7 A992Fy50 I/Wide Flange 2.9729 1.25 0.0625 

TGL0L2 A992Fy50 SD Section    
TGL2L6 A992Fy50 SD Section    
TGL6L8 A992Fy50 SD Section    

W30X116 A36 I/Wide Flange 2.5 0.875 0.0708 
W30X99 A36 I/Wide Flange 2.475 0.875 0.0558 

 
 
Table:  Frame Section Properties 01 - General, Part 2 of 8 

Table:  Frame Section Properties 01 - General, Part 2 of 8 

SectionName tw t2b tfb Area TorsConst I33 
 ft ft ft ft2 ft4 ft4 

ARL0R1    1.3718 1.889054 1.96309 
ARR1R3    1.3001 1.837566 1.893222 
ARR3R4    1.229 1.781335 1.824012 
ARR4R7    1.1579 1.720006 1.754793 

Cable    0.0442 0.000311 0.000156 
DIAR1 0.0729 1.25 0.0729 0.3903 0.000674 0.53171 

DIAR2R7 0.0625 1.25 0.0625 0.3342 0.000426 0.451229 
FLBM37 0.0365 1.3333 0.1146 0.5185 0.00136 3.306855 
FLBM5 0.0365 1.3333 0.1302 0.5601 0.001935 3.691192 

FLBMT0 0.0365 1.3333 0.0729 0.4073 0.000427 2.299202 
FLBMT1246 0.0365 1.3333 0.1563 0.6297 0.003238 4.342553 

FSEC1 0.02083 0.41667 0.03167 0.0459 0.000011 0.007615 
HP14X102 0.05875 1.23333 0.05875 0.2083 0.00026 0.050637 
HP14X73 0.04208 1.21667 0.04208 0.1486 0.000097 0.035156 
HP14X89 0.05125 1.225 0.05125 0.1813 0.000173 0.043596 

Portal Brace 0.0625 1.25 0.0625 0.2917 0.00037 0.247143 
STRUTR2R7 0.0625 1.25 0.0625 0.3342 0.000426 0.451229 

TGL0L2    1.5212 2.985977 21.111538 
TGL2L6    1.5853 3.009519 22.486462 
TGL6L8    1.3929 2.93165 18.380184 

W30X116 0.0471 0.875 0.0708 0.235 0.000278 0.234322 
W30X99 0.0433 0.875 0.0558 0.2 0.00016 0.190534 
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Table:  Frame Section Properties 01 - General, Part 3 of 8 

Table:  Frame Section Properties 01 - General, Part 3 of 8 

SectionName I22 I23 AS2 AS3 S33 S22 
 ft4 ft4 ft2 ft2 ft3 ft3 

ARL0R1 1.105147 0. 1.0352 0.3048 1.090229 0.982353 
ARR1R3 1.048333 0. 0.9697 0.3044 1.050469 0.931851 
ARR3R4 0.990627 0. 0.9045 0.3039 1.011048 0.880557 
ARR4R7 0.931581 0. 0.8388 0.3036 0.971582 0.828072 

Cable 0.000156 0. 0.0398 0.0398 1. 1. 
DIAR1 0.023823 0. 0.2187 0.1519 0.354473 0.038116 

DIAR2R7 0.020403 0. 0.1858 0.1302 0.303562 0.032645 
FLBM37 0.045294 0. 0.2213 0.2547 1.090921 0.067943 
FLBM5 0.051457 0. 0.2224 0.2893 1.211458 0.077187 

FLBMT0 0.028821 0. 0.2182 0.162 0.769067 0.043233 
FLBMT1246 0.061767 0. 0.2243 0.3473 1.413177 0.092653 

FSEC1 0.000382 0. 0.0208 0.022 0.01523 0.001836 
HP14X102 0.018326 0. 0.0685 0.1208 0.086806 0.029717 
HP14X73 0.012587 0. 0.0477 0.0853 0.06204 0.020691 
HP14X89 0.015721 0. 0.0589 0.1046 0.075819 0.025668 

Portal Brace 0.020389 0. 0.1432 0.1302 0.215686 0.032623 
STRUTR2R7 0.020403 0. 0.1858 0.1302 0.303562 0.032645 

TGL0L2 1.392646 0. 0.7611 0.5887 4.564657 0.903242 
TGL2L6 1.443454 0. 0.7637 0.6407 4.851029 0.936199 
TGL6L8 1.291031 0. 0.7551 0.4856 3.992047 0.837327 

W30X116 0.007926 0. 0.1178 0.1033 0.187458 0.018116 
W30X99 0.006246 0. 0.1072 0.0814 0.153967 0.014277 

 
 
Table:  Frame Section Properties 01 - General, Part 4 of 8 

Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

ARL0R1 1.442008 1.18804 1.19625 0.89756  No 
ARR1R3 1.380691 1.124189 1.20675 0.89798  No 
ARR3R4 1.319954 1.06015 1.21826 0.8978  No 
ARR4R7 1.259211 0.995372 1.23104 0.89695  No 

Cable 1. 1. 1. 1. 0. No 
DIAR1 0.415201 0.060745 1.16715 0.24705  No 

DIAR2R7 0.354102 0.051609 1.16189 0.24707  No 
FLBM37 1.219316 0.103804 2.5254 0.29556  No 
FLBM5 1.345766 0.11767 2.56712 0.3031  No 

FLBMT0 0.884589 0.06674 2.37588 0.26601  No 
FLBMT1246 1.55867 0.140869 2.62606 0.31319  No 

FSEC1 0.017346 0.00285 0.4073 0.09128  No 
HP14X102 0.097801 0.045602 0.49301 0.29659  No 
HP14X73 0.068287 0.031597 0.48638 0.29103  No 
HP14X89 0.084491 0.039178 0.49044 0.29451  No 

Portal Brace 0.247509 0.050944 0.92051 0.2644  No 
STRUTR2R7 0.354102 0.051609 1.16189 0.24707  No 

TGL0L2 5.205132 1.360108 3.7254 0.95683  No 
TGL2L6 5.502079 1.409543 3.76623 0.95422  No 
TGL6L8 4.613239 1.261238 3.63259 0.96274  No 
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Table:  Frame Section Properties 01 - General, Part 4 of 8 

SectionName Z33 Z22 R33 R22 EccV2 ConcCol 
 ft3 ft3 ft ft ft  

W30X116 0.215982 0.028411 0.9986 0.18365  No 
W30X99 0.178582 0.022469 0.97609 0.17673  No 

 
 
Table:  Frame Section Properties 01 - General, Part 5 of 8 

Table:  Frame Section Properties 01 - General, Part 5 of 8 

SectionName ConcBeam Color TotalWt TotalMass FromFile AMod 
   Kip Kip-s2/ft   

ARL0R1 No Green 144.721 4.5 No 1. 
ARR1R3 No Red 258.583 8.04 No 1. 
ARR3R4 No Yellow 116.26 3.61 No 1. 
ARR4R7 No Blue 315.891 9.82 No 1. 

Cable No Gray8Dark 35.721 1.11 No 1. 
DIAR1 No Green 37.347 1.16 No 1. 

DIAR2R7 No Yellow 149.857 4.66 No 1. 
FLBM37 No Cyan 40.321 1.25 No 1. 
FLBM5 No Magenta 29.037 0.9 No 1. 

FLBMT0 No White 21.116 0.66 No 1. 
FLBMT1246 No Blue 130.58 4.06 No 1. 

FSEC1 No Cyan 0. 0. No 1. 
HP14X102 No Gray8Dark 18.196 0.57 Yes 1. 
HP14X73 No Red 64.898 2.02 Yes 1. 
HP14X89 No Yellow 15.83 0.49 Yes 1. 

Portal Brace No Magenta 11.864 0.37 No 1. 
STRUTR2R7 No Gray8Dark 82.872 2.58 No 1. 

TGL0L2 No Blue 261.723 8.13 No 1. 
TGL2L6 No Magenta 545.515 16.96 No 1. 
TGL6L8 No Gray8Dark 119.827 3.72 No 1. 

W30X116 No Yellow 338.379 10.52 No 1. 
W30X99 No Red 0. 0. No 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 6 of 8 

Table:  Frame Section Properties 01 - General, Part 6 of 8 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

ARL0R1 1. 1. 1. 1. 1. 1.2 
ARR1R3 1. 1. 1. 1. 1. 1.2 
ARR3R4 1. 1. 1. 1. 1. 1.2 
ARR4R7 1. 1. 1. 1. 1. 1.2 

Cable 1. 1. 1. 1. 1. 1. 
DIAR1 1. 1. 1. 1. 1. 1. 

DIAR2R7 1. 1. 1. 1. 1. 1. 
FLBM37 1. 1. 1. 1. 1. 1.15 
FLBM5 1. 1. 1. 1. 1. 1.15 

FLBMT0 1. 1. 1. 1. 1. 1.15 
FLBMT1246 1. 1. 1. 1. 1. 1.15 

FSEC1 1. 1. 1. 1. 1. 1. 
HP14X102 1. 1. 1. 1. 1. 1. 
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Table:  Frame Section Properties 01 - General, Part 6 of 8 

SectionName A2Mod A3Mod JMod I2Mod I3Mod MMod 
       

HP14X73 1. 1. 1. 1. 1. 1. 
HP14X89 1. 1. 1. 1. 1. 1. 

Portal Brace 1. 1. 1. 1. 1. 1. 
STRUTR2R7 1. 1. 1. 1. 1. 1. 

TGL0L2 1. 1. 1. 1. 1. 1.15 
TGL2L6 1. 1. 1. 1. 1. 1.15 
TGL6L8 1. 1. 1. 1. 1. 1.15 

W30X116 1. 1. 1. 1. 1. 1.1 
W30X99 1. 1. 1. 1. 1. 1. 

 
 
Table:  Frame Section Properties 01 - General, Part 7 of 8 

Table:  Frame Section Properties 01 - General, Part 7 of 8 

SectionName WMod SectInFile FileName GUID 
     

ARL0R1 1.2    
ARR1R3 1.2    
ARR3R4 1.2    
ARR4R7 1.2    

Cable 1.    
DIAR1 1.    

DIAR2R7 1.    
FLBM37 1.15    
FLBM5 1.15    

FLBMT0 1.15    
FLBMT1246 1.15    

FSEC1 1.    
HP14X102 1. HP14X102 C:\Program Files\Computers and 

Structures\SAP2000 18\aisc13.pro 
 

HP14X73 1. HP14X73 C:\Program Files\Computers and 
Structures\SAP2000 18\aisc13.pro 

 

HP14X89 1. HP14X89 C:\Program Files\Computers and 
Structures\SAP2000 18\aisc13.pro 

 

Portal Brace 1.    
STRUTR2R7 1.    

TGL0L2 1.15    
TGL2L6 1.15    
TGL6L8 1.15    

W30X116 1.1    
W30X99 1.    

 
 
Table:  Frame Section Properties 01 - General, Part 8 of 8 

Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

ARL0R1 Added 2/7/2016 7:18:29 PM 
ARR1R3 Added 2/7/2016 8:23:51 PM 
ARR3R4 Added 2/7/2016 8:29:59 PM 
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Table:  Frame Section Properties 01 - General, Part 8 of 8 

SectionName Notes 
  

ARR4R7 Added 2/7/2016 8:32:35 PM 
Cable Added 5/31/2016 9:59:30 PM 

DIAR1 Added 2/7/2016 10:35:01 PM 
DIAR2R7 Added 2/7/2016 10:38:41 PM 
FLBM37 Added 9/28/2014 7:12:14 PM 
FLBM5 Added 9/28/2014 7:13:11 PM 

FLBMT0 Added 9/28/2014 7:07:51 PM 
FLBMT1246 Added 9/28/2014 7:10:48 PM 

FSEC1 Added 9/27/2014 9:39:49 PM 
HP14X102 Imported 9/28/2014 8:17:56 PM 

from AISC13.pro 
HP14X73 Imported 9/28/2014 8:18:59 PM 

from AISC13.pro 
HP14X89 Imported 9/28/2014 8:19:10 PM 

from AISC13.pro 
Portal Brace Added 2/7/2016 10:01:07 PM 

STRUTR2R7 Added 2/7/2016 10:08:13 PM 
TGL0L2 Added 2/7/2016 6:44:03 PM 
TGL2L6 Added 2/7/2016 6:56:25 PM 
TGL6L8 Added 2/7/2016 7:04:47 PM 

W30X116 Added 2/7/2016 5:37:44 PM 
W30X99 Added 2/7/2016 5:34:08 PM 

 
 
Table:  Link Property Definitions 01 - General, Part 1 of 3 

Table:  Link Property Definitions 01 - General, Part 1 of 3 

Link LinkType Mass Weight RotInert1 RotInert2 RotInert3 
  Kip-s2/ft Kip Kip-ft-s2 Kip-ft-s2 Kip-ft-s2 

LINK1 Linear 0. 0. 0. 0. 0. 
LINK2 Linear 0. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 2 of 3 

Table:  Link Property Definitions 01 - General, Part 2 of 3 

Link DefLength DefArea PDM2I PDM2J PDM3I PDM3J 
 ft ft2     

LINK1 1. 1. 0. 0. 0. 0. 
LINK2 1. 1. 0. 0. 0. 0. 

 
 
Table:  Link Property Definitions 01 - General, Part 3 of 3 

Table:  Link Property Definitions 01 - General, Part 3 of 3 

Link Color GUID Notes 
    

LINK1 Magenta  Added 2/29/2016 3:34:56 PM 
LINK2 Magenta  Added 2/29/2016 3:34:56 PM 
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Table:  Link Property Definitions 02 - Linear 

Table:  Link Property Definitions 02 - Linear 

Link DOF Fixed TransKE RotKE TransCE RotCE DJ 
   Kip/ft Kip-ft/rad Kip-s/ft Kip-ft-s/rad ft 

LINK1 U1 No 100000.  0.   
LINK1 U2 No 100000.  0.  0. 
LINK1 U3 No 100000.  0.  0. 
LINK1 R1 No  0.  0.  
LINK1 R2 No  0.  0.  
LINK1 R3 No  0.  0.  
LINK2 U1 No 100000.  0.   
LINK2 U2 No 100.  0.  0. 
LINK2 U3 No 100000.  0.  0. 
LINK2 R1 No  0.  0.  
LINK2 R2 No  0.  0.  
LINK2 R3 No  0.  0.  

 
 
Table:  Area Section Properties, Part 1 of 4 

Table:  Area Section Properties, Part 1 of 4 

Section Material MatAngle AreaType Type DrillDOF Thicknes
s 

BendThick 

  Degrees    ft ft 

ASEC1 A36 0. Shell Shell-
Thin 

Yes 1. 1. 

ConcDeck 4000Psi 0. Shell Shell-
Thin 

Yes 0.6667 0.6667 

 
 
Table:  Area Section Properties, Part 2 of 4 

Table:  Area Section Properties, Part 2 of 4 

Section Arc InComp CoordSys Color TotalWt TotalMass 
 Degrees    Kip Kip-s2/ft 

ASEC1    Green 5333.16 165.76 
ConcDeck    12615935 2388.592 74.24 

 
 
Table:  Area Section Properties, Part 3 of 4 

Table:  Area Section Properties, Part 3 of 4 

Section F11Mod F22Mod F12Mod M11Mod M22Mod M12Mod V13Mod 
        

ASEC1 1. 1. 1. 1. 1. 1. 1. 
ConcDeck 1. 1. 1. 1. 1. 1. 1. 

 
 
Table:  Area Section Properties, Part 4 of 4 

Table:  Area Section Properties, Part 4 of 4 

Section V23Mod MMod WMod GUID Notes 
      

ASEC1 1. 1. 1. 6f5825de-a2dc-451c-a3c5-
5df2377eea92 

Added 2/15/2016 12:48:48 PM 
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Table:  Area Section Properties, Part 4 of 4 

Section V23Mod MMod WMod GUID Notes 
      

ConcDeck 1. 1.2 1.2 6aa652a7-753e-47a5-9f99-
1d2dc88054b2 

Added 2/15/2016 12:49:15 PM 

 
 
Section 2 US 24 Bridge Load Cases 

Table:  Load Case Definitions, Part 1 of 3 

Table:  Load Case Definitions, Part 1 of 3 

Case Type InitialCond ModalCase BaseCase MassSource DesTypeOpt 
       

DEAD NonStatic Zero    Prog Det 
LIVELOAD LinMoving Zero    Prog Det 

PDELTA NonStatic Zero    Prog Det 
BUCKLING

_DEAD 
LinBuckling Zero    Prog Det 

MODAL LinModal DEAD    Prog Det 

 
 
Table:  Load Case Definitions, Part 2 of 3 

Table:  Load Case Definitions, Part 2 of 3 

Case DesignType DesActOpt DesignAct AutoType RunCase CaseStatus 
       

DEAD DEAD Prog Det Non-
Composite 

None Yes Finished 

LIVELOAD VEHICLE 
LIVE 

Prog Det Short-Term 
Composite 

None Yes Finished 

PDELTA DEAD Prog Det Non-
Composite 

None No Not Run 

BUCKLING
_DEAD 

DEAD Prog Det Other None No Not Run 

MODAL OTHER Prog Det Other None Yes Finished 

 
 
Table:  Load Case Definitions, Part 3 of 3 

Table:  Load Case Definitions, Part 3 of 3 

Case GUID Notes 
   

DEAD   
LIVELOAD   

PDELTA   
BUCKLING

_DEAD 
  

MODAL   

 
 
Table:  Case - Static 1 - Load Assignments 

Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 
    

DEAD Load pattern DEAD 1. 
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Table:  Case - Static 1 - Load Assignments 

Case LoadType LoadName LoadSF 
    

PDELTA Load pattern DEAD 1. 

 
 
Table:  Case - Static 2 - Nonlinear Load Application 

Table:  Case - Static 2 - Nonlinear Load Application 

Case LoadApp MonitorDOF MonitorJt 
    

DEAD Full Load U1 14 
PDELTA Full Load U1 14 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 1 of 5 

Case Unloading GeoNonLin ResultsSave MaxTotal MaxNull 
      

DEAD Unload Entire None Final State 200 50 
PDELTA Unload Entire Large Displ Final State 200 50 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 2 of 5 

Case MaxIterCS MaxIterNR ItConvTol UseEvStep EvLumpTol LSPerIter 
       

DEAD 10 40 1.0000E-04 Yes 0.01 20 
PDELTA 10 40 1.0000E-04 Yes 0.01 20 

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 3 of 5 

Case LSTol LSStepFact StageSave StageMinIns StageMinTD 
      

DEAD 0.1 1.618    
PDELTA 0.1 1.618    

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 4 of 5 

Case FrameTC FrameHinge CableTC LinkTC LinkOther TimeDepMa
t 

       

DEAD Yes Yes Yes Yes Yes  
PDELTA Yes Yes Yes Yes Yes  

 
 
Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TFMaxIter TFTol TFAccelFact TFNoStop 
     

DEAD 10 0.01 1. No 
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Table:  Case - Static 4 - Nonlinear Parameters, Part 5 of 5 

Case TFMaxIter TFTol TFAccelFact TFNoStop 
     

PDELTA 10 0.01 1. No 

 
 
Table:  Case - Modal 1 - General, Part 1 of 2 

Table:  Case - Modal 1 - General, Part 1 of 2 

Case ModeType MaxNumMo
des 

MinNumMo
des 

EigenShift EigenCutoff EigenTol 

    Cyc/sec Cyc/sec  

MODAL Eigen 30 1 0.0000E+00 0.0000E+00 1.0000E-09 

 
 
Table:  Case - Modal 1 - General, Part 2 of 2 

Table:  Case - Modal 1 - General, 
Part 2 of 2 

Case AutoShift 
  

MODAL Yes 

 
 
Table:  Case - Moving Load 1 - Lane Assignments 

Table:  Case - Moving Load 1 - Lane Assignments 

Case Assign
Num 

VehClass ScaleFactor MinLoaded MaxLoaded NumLanes 

       

LIVELOAD 1 HL93_ALL 1. 0 2 6 

 
 
Table:  Case - Moving Load 2 - Lanes Loaded 

Table:  Case - Moving Load 2 - Lanes Loaded 

Case AssignNum Lane 
   

LIVELOAD 1 CENLANES 
LIVELOAD 1 CNTLANE2 
LIVELOAD 1 LFTLANE1 
LIVELOAD 1 LFTLANE2 
LIVELOAD 1 RGTLANE1 
LIVELOAD 1 RTLANE2 

 
 
Table:  Area Section Properties, Part 1 of 4 

Table:  Area Section Properties, Part 1 of 4 

Section Material MatAngle AreaType Type DrillDOF Thickness BendThick 
  Degrees    ft ft 

ASEC1 A36 0. Shell Shell-Thin Yes 1. 1. 
ConcDeck 4000Psi 0. Shell Shell-Thin Yes 0.6667 0.6667 
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Table:  Area Section Properties, Part 2 of 4 

Table:  Area Section Properties, Part 2 of 4 

Section Arc InComp CoordSys Color TotalWt TotalMass 
 Degrees    Kip Kip-s2/ft 

ASEC1    Green 5333.16 165.76 
ConcDeck    12615935 2388.592 74.24 

 
 
Table:  Area Section Properties, Part 3 of 4 

Table:  Area Section Properties, Part 3 of 4 

Section F11Mod F22Mod F12Mod M11Mod M22Mod M12Mod V13Mod 
        

ASEC1 1. 1. 1. 1. 1. 1. 1. 
ConcDeck 1. 1. 1. 1. 1. 1. 1. 

 
 
Table:  Area Section Properties, Part 4 of 4 

Table:  Area Section Properties, Part 4 of 4 

Section V23Mod MMod WMod GUID Notes 
      

ASEC1 1. 1. 1. 6f5825de-a2dc-451c-a3c5-
5df2377eea92 

Added 2/15/2016 12:48:48 
PM 

ConcDeck 1. 1.2 1.2 6aa652a7-753e-47a5-9f99-
1d2dc88054b2 

Added 2/15/2016 12:49:15 
PM 

 
 
Section 3  US 24 Bridge Modal Analysis Output 

Table:  Modal Load Participation Ratios 

Table:  Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 
   Percent Percent 

MODAL Acceleration UX 99.7876 56.8782 
MODAL Acceleration UY 99.7729 55.5977 
MODAL Acceleration UZ 95.4678 17.9913 

 
 
Table:  Modal Participating Mass Ratios, Part 1 of 3 

Table:  Modal Participating Mass Ratios, Part 1 of 3 

OutputCase StepType StepNum Period UX UY UZ SumUX 
   Sec     

MODAL Mode 1. 1.945338 0.28182 4.900E-18 6.877E-05 0.28182 
MODAL Mode 2. 1.641859 2.771E-17 0.15365 2.345E-17 0.28182 
MODAL Mode 3. 1.607784 0.09449 0. 3.354E-05 0.37631 
MODAL Mode 4. 1.148779 1.661E-17 0.00891 6.595E-19 0.37631 
MODAL Mode 5. 1.00383 0.14589 1.060E-16 2.030E-05 0.5222 
MODAL Mode 6. 0.936634 3.151E-17 0.00017 7.515E-18 0.5222 
MODAL Mode 7. 0.870946 3.139E-05 6.446E-18 0.02624 0.52224 
MODAL Mode 8. 0.652339 0.00154 6.671E-15 0.13933 0.52378 
MODAL Mode 9. 0.556076 4.818E-17 0.00679 2.864E-17 0.52378 
MODAL Mode 10. 0.54103 2.470E-17 1.442E-06 3.475E-17 0.52378 
MODAL Mode 11. 0.456406 0.00064 9.192E-17 0.00017 0.52442 
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Table:  Modal Participating Mass Ratios, Part 1 of 3 

OutputCase StepType StepNum Period UX UY UZ SumUX 
   Sec     

MODAL Mode 12. 0.425114 8.941E-16 9.399E-05 1.761E-16 0.52442 
MODAL Mode 13. 0.413113 1.824E-15 6.507E-05 1.137E-16 0.52442 
MODAL Mode 14. 0.352426 8.384E-15 0.07429 5.664E-15 0.52442 
MODAL Mode 15. 0.351373 7.693E-15 2.964E-09 2.112E-15 0.52442 
MODAL Mode 16. 0.310727 0.00148 2.062E-15 0.00489 0.52591 
MODAL Mode 17. 0.302514 3.823E-15 0.00026 1.868E-15 0.52591 
MODAL Mode 18. 0.277762 1.438E-14 0.00022 1.440E-14 0.52591 
MODAL Mode 19. 0.256964 8.798E-14 0.21877 5.042E-14 0.52591 
MODAL Mode 20. 0.245218 0.03091 7.719E-14 0.00438 0.55682 
MODAL Mode 21. 0.245169 4.397E-14 0.06244 2.079E-13 0.55682 
MODAL Mode 22. 0.233681 5.603E-16 0.00094 5.651E-14 0.55682 
MODAL Mode 23. 0.225049 0.01104 2.529E-15 0.00083 0.56786 
MODAL Mode 24. 0.218159 4.617E-13 2.363E-05 2.044E-15 0.56786 
MODAL Mode 25. 0.200153 9.087E-16 0.01034 1.383E-14 0.56786 
MODAL Mode 26. 0.194539 4.720E-14 0.00525 7.732E-15 0.56786 
MODAL Mode 27. 0.191342 8.180E-15 0.01304 2.551E-14 0.56786 
MODAL Mode 28. 0.18975 4.522E-14 0.00048 3.444E-14 0.56786 
MODAL Mode 29. 0.18761 0.00092 7.011E-15 0.00396 0.56878 
MODAL Mode 30. 0.178726 3.436E-15 0.00026 1.153E-13 0.56878 

 
 
Table:  Modal Participating Mass Ratios, Part 2 of 3 

Table:  Modal Participating Mass Ratios, Part 2 of 3 

OutputCase StepType StepNum SumUY SumUZ RX RY RZ 
        

MODAL Mode 1. 4.900E-18 6.877E-05 4.059E-18 0.00126 1.052E-17 
MODAL Mode 2. 0.15365 6.877E-05 0.46157 2.207E-18 1.121E-05 
MODAL Mode 3. 0.15365 0.0001 0. 0.05213 8.473E-20 
MODAL Mode 4. 0.16256 0.0001 0.0034 2.160E-20 6.599E-05 
MODAL Mode 5. 0.16256 0.00012 1.157E-16 0.00206 2.440E-16 
MODAL Mode 6. 0.16273 0.00012 0.00011 8.085E-18 0.01893 
MODAL Mode 7. 0.16273 0.02636 3.191E-18 2.195E-07 1.468E-18 
MODAL Mode 8. 0.16273 0.16568 3.231E-15 1.973E-06 7.878E-15 
MODAL Mode 9. 0.16952 0.16568 0.0033 2.514E-17 8.167E-06 
MODAL Mode 10. 0.16952 0.16568 2.873E-06 9.145E-18 0.04514 
MODAL Mode 11. 0.16952 0.16586 7.827E-18 0.00743 6.501E-17 
MODAL Mode 12. 0.16961 0.16586 0.00037 1.539E-15 0.01877 
MODAL Mode 13. 0.16968 0.16586 0.01206 1.950E-15 0.00141 
MODAL Mode 14. 0.24396 0.16586 0.05418 4.429E-17 4.497E-06 
MODAL Mode 15. 0.24396 0.16586 2.054E-07 1.912E-14 0.00143 
MODAL Mode 16. 0.24396 0.17075 1.261E-19 0.00015 3.403E-14 
MODAL Mode 17. 0.24422 0.17075 0.00023 1.310E-14 0.00119 
MODAL Mode 18. 0.24444 0.17075 0.00013 1.028E-14 0.24666 
MODAL Mode 19. 0.46321 0.17075 0.11494 3.440E-16 0.00054 
MODAL Mode 20. 0.46321 0.17513 1.182E-14 0.00025 4.579E-15 
MODAL Mode 21. 0.52565 0.17513 0.04168 2.790E-15 0.00056 
MODAL Mode 22. 0.52659 0.17513 0.0002 8.311E-15 0.13031 
MODAL Mode 23. 0.52659 0.17595 3.493E-15 0.00676 6.356E-14 
MODAL Mode 24. 0.52661 0.17595 2.978E-05 1.914E-13 0.0166 
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Table:  Modal Participating Mass Ratios, Part 2 of 3 

OutputCase StepType StepNum SumUY SumUZ RX RY RZ 
        

MODAL Mode 25. 0.53695 0.17595 0.00556 3.527E-18 0.00193 
MODAL Mode 26. 0.5422 0.17595 0.00077 8.926E-16 0.00042 
MODAL Mode 27. 0.55524 0.17595 0.00112 5.307E-17 0.00251 
MODAL Mode 28. 0.55572 0.17595 5.045E-05 3.497E-15 3.841E-05 
MODAL Mode 29. 0.55572 0.17991 4.749E-15 8.091E-06 4.515E-15 
MODAL Mode 30. 0.55598 0.17991 4.094E-06 1.027E-13 8.706E-06 

 
 
Table:  Modal Participating Mass Ratios, Part 3 of 3 

Table:  Modal Participating Mass Ratios, Part 3 of 3 

OutputCase StepType StepNum SumRX SumRY SumRZ 
      

MODAL Mode 1. 4.059E-18 0.00126 1.052E-17 
MODAL Mode 2. 0.46157 0.00126 1.121E-05 
MODAL Mode 3. 0.46157 0.05339 1.121E-05 
MODAL Mode 4. 0.46497 0.05339 7.721E-05 
MODAL Mode 5. 0.46497 0.05545 7.721E-05 
MODAL Mode 6. 0.46508 0.05545 0.019 
MODAL Mode 7. 0.46508 0.05545 0.019 
MODAL Mode 8. 0.46508 0.05545 0.019 
MODAL Mode 9. 0.46837 0.05545 0.01901 
MODAL Mode 10. 0.46838 0.05545 0.06415 
MODAL Mode 11. 0.46838 0.06288 0.06415 
MODAL Mode 12. 0.46875 0.06288 0.08292 
MODAL Mode 13. 0.48081 0.06288 0.08434 
MODAL Mode 14. 0.53499 0.06288 0.08434 
MODAL Mode 15. 0.53499 0.06288 0.08577 
MODAL Mode 16. 0.53499 0.06303 0.08577 
MODAL Mode 17. 0.53522 0.06303 0.08696 
MODAL Mode 18. 0.53535 0.06303 0.33362 
MODAL Mode 19. 0.65029 0.06303 0.33416 
MODAL Mode 20. 0.65029 0.06328 0.33416 
MODAL Mode 21. 0.69197 0.06328 0.33473 
MODAL Mode 22. 0.69217 0.06328 0.46504 
MODAL Mode 23. 0.69217 0.07004 0.46504 
MODAL Mode 24. 0.6922 0.07004 0.48164 
MODAL Mode 25. 0.69776 0.07004 0.48357 
MODAL Mode 26. 0.69853 0.07004 0.48399 
MODAL Mode 27. 0.69965 0.07004 0.4865 
MODAL Mode 28. 0.6997 0.07004 0.48654 
MODAL Mode 29. 0.6997 0.07005 0.48654 
MODAL Mode 30. 0.6997 0.07005 0.48655 

 
 
Table:  Modal Participation Factors, Part 1 of 2 

Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNum Period UX UY UZ RX 
   Sec Kip-ft Kip-ft Kip-ft Kip-ft 

MODAL Mode 1. 1.945338 -15.498306 -6.433E-08 0.242095 2.907E-06 
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Table:  Modal Participation Factors, Part 1 of 2 

OutputCase StepType StepNum Period UX UY UZ RX 
   Sec Kip-ft Kip-ft Kip-ft Kip-ft 

MODAL Mode 2. 1.641859 -1.532E-07 11.69422 1.414E-07 -1002.09197 
MODAL Mode 3. 1.607784 8.974157 1.843E-09 -0.16908 -1.771E-07 
MODAL Mode 4. 1.148779 1.194E-07 2.798335 -2.371E-08 82.038883 
MODAL Mode 5. 1.00383 -11.151026 3.016E-07 0.131531 -0.000016 
MODAL Mode 6. 0.936634 1.621E-07 0.359254 -8.003E-08 -13.912451 
MODAL Mode 7. 0.870946 0.164114 6.708E-08 4.728703 -2.158E-06 
MODAL Mode 8. 0.652339 1.147153 -2.344E-06 10.897205 0.00008 
MODAL Mode 9. 0.556076 2.073E-07 1.724925 1.562E-07 -41.26951 
MODAL Mode 10. 0.54103 1.427E-07 -0.029147 1.721E-07 2.095357 
MODAL Mode 11. 0.456406 0.743851 2.095E-07 -0.382597 2.918E-07 
MODAL Mode 12. 0.425114 8.964E-07 -0.207637 -3.874E-07 58.296911 
MODAL Mode 13. 0.413113 -1.269E-06 -1.926522 3.113E-07 264.095732 
MODAL Mode 14. 0.352426 2.669E-06 7.65279 -2.197E-06 -319.195484 
MODAL Mode 15. 0.351373 -2.483E-06 -0.008426 1.342E-06 1.081083 
MODAL Mode 16. 0.310727 1.121891 1.300E-06 2.042244 2.102E-06 
MODAL Mode 17. 0.302514 1.784E-06 -0.503169 -1.262E-06 24.243717 
MODAL Mode 18. 0.277762 -3.473E-06 0.437386 3.503E-06 -16.692993 
MODAL Mode 19. 0.256964 8.739E-06 13.934405 -6.556E-06 -509.622446 
MODAL Mode 20. 0.245218 5.138776 -8.321E-06 -1.931528 -0.000145 
MODAL Mode 21. 0.245169 -6.303E-06 6.985699 0.000013 -277.332101 
MODAL Mode 22. 0.233681 -7.826E-07 -0.928845 6.940E-06 22.56955 
MODAL Mode 23. 0.225049 3.057414 2.271E-06 -0.838758 0.000036 
MODAL Mode 24. 0.218159 -0.00002 -0.012234 -1.320E-06 17.462826 
MODAL Mode 25. 0.200153 8.825E-07 3.18138 -3.434E-06 -121.471866 
MODAL Mode 26. 0.194539 6.390E-06 -2.026315 -2.567E-06 34.650261 
MODAL Mode 27. 0.191342 2.683E-06 3.105497 -4.663E-06 -34.575269 
MODAL Mode 28. 0.18975 6.273E-06 -0.56999 -5.418E-06 5.958077 
MODAL Mode 29. 0.18761 0.896553 -2.714E-06 -1.837404 0.000117 
MODAL Mode 30. 0.178726 -1.444E-06 -0.412503 -9.915E-06 -0.464659 

 
 
Table:  Modal Participation Factors, Part 2 of 2 

Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-ft Kip-ft Kip-ft-s2 Kip-ft 

MODAL Mode 1. -263.331681 0.000023 1. 10.43205 
MODAL Mode 2. 0.000011 29.637681 1. 14.64496 
MODAL Mode 3. 1694.968966 -2.168E-06 1. 15.2723 
MODAL Mode 4. 1.115E-06 66.130451 1. 29.91484 
MODAL Mode 5. -337.030932 -0.000112 1. 39.17776 
MODAL Mode 6. -0.000021 -1141.54683 1. 45.00073 
MODAL Mode 7. 3.511425 -7.929E-06 1. 52.04485 
MODAL Mode 8. -10.432281 0.000626 1. 92.77116 
MODAL Mode 9. 0.000038 -18.670764 1. 127.67054 
MODAL Mode 10. -0.000023 -1571.06947 1. 134.8703 
MODAL Mode 11. 640.067378 -0.000056 1. 189.5207 
MODAL Mode 12. 0.000293 839.082673 1. 218.4484 
MODAL Mode 13. -0.000329 -234.133665 1. 231.32477 
MODAL Mode 14. -0.00005 16.514474 1. 317.85194 



www.manaraa.com

359 
 

Table:  Modal Participation Factors, Part 2 of 2 

OutputCase StepType StepNum RY RZ ModalMass ModalStiff 
   Kip-ft Kip-ft Kip-ft-s2 Kip-ft 

MODAL Mode 15. 0.001031 -277.142197 1. 319.75885 
MODAL Mode 16. -90.108195 -0.001251 1. 408.88602 
MODAL Mode 17. 0.000848 -382.965623 1. 431.38916 
MODAL Mode 18. -0.000751 -3634.943 1. 511.69671 
MODAL Mode 19. 0.000143 -185.833288 1. 597.87966 
MODAL Mode 20. -118.162807 -0.000673 1. 656.53298 
MODAL Mode 21. -0.000403 184.191866 1. 656.79096 
MODAL Mode 22. -0.000682 -2673.01945 1. 722.95761 
MODAL Mode 23. -610.867416 0.001932 1. 779.48072 
MODAL Mode 24. -0.003267 917.691607 1. 829.49691 
MODAL Mode 25. -0.000014 302.096268 1. 985.45459 
MODAL Mode 26. 0.000225 128.276496 1. 1043.14956 
MODAL Mode 27. 0.000057 -346.270742 1. 1078.29891 
MODAL Mode 28. 0.000443 42.646948 1. 1096.46685 
MODAL Mode 29. -20.526546 -0.000394 1. 1121.63023 
MODAL Mode 30. 0.002396 -17.438822 1. 1235.89659 

 
 
Table:  Modal Periods And Frequencies 

Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 
   Sec Cyc/sec rad/sec rad2/sec2 

MODAL Mode 1. 1.945338 5.1405E-01 3.2299E+00 1.0432E+01 
MODAL Mode 2. 1.641859 6.0907E-01 3.8269E+00 1.4645E+01 
MODAL Mode 3. 1.607784 6.2197E-01 3.9080E+00 1.5272E+01 
MODAL Mode 4. 1.148779 8.7049E-01 5.4694E+00 2.9915E+01 
MODAL Mode 5. 1.00383 9.9618E-01 6.2592E+00 3.9178E+01 
MODAL Mode 6. 0.936634 1.0677E+00 6.7083E+00 4.5001E+01 
MODAL Mode 7. 0.870946 1.1482E+00 7.2142E+00 5.2045E+01 
MODAL Mode 8. 0.652339 1.5329E+00 9.6318E+00 9.2771E+01 
MODAL Mode 9. 0.556076 1.7983E+00 1.1299E+01 1.2767E+02 
MODAL Mode 10. 0.54103 1.8483E+00 1.1613E+01 1.3487E+02 
MODAL Mode 11. 0.456406 2.1910E+00 1.3767E+01 1.8952E+02 
MODAL Mode 12. 0.425114 2.3523E+00 1.4780E+01 2.1845E+02 
MODAL Mode 13. 0.413113 2.4206E+00 1.5209E+01 2.3132E+02 
MODAL Mode 14. 0.352426 2.8375E+00 1.7828E+01 3.1785E+02 
MODAL Mode 15. 0.351373 2.8460E+00 1.7882E+01 3.1976E+02 
MODAL Mode 16. 0.310727 3.2183E+00 2.0221E+01 4.0889E+02 
MODAL Mode 17. 0.302514 3.3056E+00 2.0770E+01 4.3139E+02 
MODAL Mode 18. 0.277762 3.6002E+00 2.2621E+01 5.1170E+02 
MODAL Mode 19. 0.256964 3.8916E+00 2.4452E+01 5.9788E+02 
MODAL Mode 20. 0.245218 4.0780E+00 2.5623E+01 6.5653E+02 
MODAL Mode 21. 0.245169 4.0788E+00 2.5628E+01 6.5679E+02 
MODAL Mode 22. 0.233681 4.2793E+00 2.6888E+01 7.2296E+02 
MODAL Mode 23. 0.225049 4.4435E+00 2.7919E+01 7.7948E+02 
MODAL Mode 24. 0.218159 4.5838E+00 2.8801E+01 8.2950E+02 
MODAL Mode 25. 0.200153 4.9962E+00 3.1392E+01 9.8545E+02 
MODAL Mode 26. 0.194539 5.1404E+00 3.2298E+01 1.0431E+03 
MODAL Mode 27. 0.191342 5.2262E+00 3.2837E+01 1.0783E+03 
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Table:  Modal Periods And Frequencies 

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue 
   Sec Cyc/sec rad/sec rad2/sec2 

MODAL Mode 28. 0.18975 5.2701E+00 3.3113E+01 1.0965E+03 
MODAL Mode 29. 0.18761 5.3302E+00 3.3491E+01 1.1216E+03 
MODAL Mode 30. 0.178726 5.5951E+00 3.5155E+01 1.2359E+03 
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APPENDIX E 

E.  DESIGN PLANS FOR CITY ISLAND BRIDGE 
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APPENDIX F 

F.  DESIGN PLANS FOR PAGE AVENUE BRIDGE 
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APPENDIX G 

G.  DESIGN PLANS FOR TENNESSEE RIVER BRIDGE 
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APPENDIX H 

H.  DESIGN PLANS FOR JEFFERSON BARRACKS BRIDGE 
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cantilever construction, 62 
City Island, 28 
Closed spandrel, 12 
Coalbrookedale, 8 
dead load, 67 
deck, 15 
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High Strength Low Alloy, 39 
impact, 70 
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Langer, 20 
link elements, 79 
live load, 69 
live load support, 32 
Network, 21 
Nielson, 20 
Off-site construction, 63 
Open spandrel, 13 
Page Avenue, 30 
plate girders, 21 
Quenched and Tempered, 39 
relief joints, 22 
shored construction, 63 
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stringers, 15 
structural steel, 39 
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tension tie, 9 
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